
Muesli
a Material UnivErSal LIbrary

version 1.0

IMDEA Materials, Madrid, Spain

muesli.materials@imdea.org

June 2016

Contents

Contents 2
1 Introduction . 2
2 Instaling MUESLI . 3
3 Main concepts . 4
4 Using MUESLI . 7
5 Using MUESLI with a commercial code 13
6 Class hierarchy outline . 15
7 Automatic testing . 16
8 Extending MUESLI . 17
9 Using MUESLI in parallel . 17
10 Contributing to MUESLI . 18
11 Licence and Developer team . 18
A.1 Materials for thermal analysis 19
A.2 Materials for small strain mechanical analysis 19
A.3 Materials for finite strain mechanical analysis 23
A.4 Fluid materials . 27
A.5 Materials for coupled thermomechanics at finite strains 30

Bibliography 31

1 Introduction

At the core of many simulation codes of solids, fluids, and structures lie
functions that encapsulate the continuum behavior of all kind of materials.
These functions provide, essentially, the same functionality in all codes: elastic,
plastic and viscoplastic routines for computational solid mechanics; newtonian
and non-newtonian fluids in CFD codes; thermal behavior, diffusion models,
etc. Despite the ubiquitousness of such material models, it does not exist,
to our knowledge, a single open-source library that provides, at least, the
most common material models. Such an omission forces developers of new
codes in computational solid and fluid mechanics to start from scratch and
implement models that are completely standard. By doing so, lots of time
and effort are spent in writing code and debugging it, code which has already
been implemented in dozens of other codes but not shared, nor designed to be
shared.

A related problem often faced by scientist working in computational me-
chanics is that material models are developed to be inserted in one existing
commercial code. In these cases, the routines can not be used except when
linked with this particular code, which in addition poses severe restrictions re-
garding the interface. For example, Abaqus [1] offers the possibility to enhance
the program’s material library by adding material routines, or UMATs. Due to

2

the specific interface specification of these files, none of the UMATs can be used,
at least in a straightforward manner, with other commercial or research codes.

Finally, a third limitation for material developers is due to the fact that com-
mercial codes often require that their extensions be written in FORTRAN 77.
While this might be an advantage for certain programmers, it is our experience
that using such a programming language precludes the use of tools which sim-
plify the coding, for example operator overloading. More importantly, the use
of C++ with tensor objects make the code closely resemble the mathematical
expressions used to define constitutive models. For complex materials, e.g.
finite strain elastoplasticity, access to a powerful and simple programming
syntax can make development, debugging, and maintenance much simpler than
with traditional programming languages.

MUESLI is a Material Universal LIbrary, a collection of C++ classes and
interfaces created with the purpose of simplifying the development and imple-
mentation of material models at the continuum scale, and their interface with
larger research and commercial computational codes. The library addresses
the limitations identified above by:

• Providing well-tested implementations of several standard material mod-
els for small and large strain solid mechanics, fluid mechanics, and other.

• Including an interface of the MUESLI material models with commercial
codes LS-DYNA and Abaqus (possibly more in the future).

• Using high-level C++ classes that simplify the tensor algebra involved,
especially, in complex material models.

Finally, let us clarify that MUESLI is not designed to solve boundary value
problems, neither to obtain strain-stress curves. Either of these goals, like
many other, require an external driving program which delegates on MUESLI
the tasks regarding the evaluation of the material response.

2 Instaling MUESLI

MUESLI is distributed in a singe zip file named muesli xx.zip, where xx

denotes the version of the library. The zip file includes the source files, the
documentation, and the makefiles to build the library in linux and mac os x
computers.

could After downloading this file, one needs to uncompress it and possibly
edit the makefile to tweak the building process if required. The makefile
is very simple and no special libraries need to be linked so often it suffices
to type make in a terminal to build the library, which is called libmuesli.a.
Installing the library in the standard path of user libraries is accomplished
by the command make install or sudo make install, if root permissions
are required. In addition, the command make test builds an executable file,

3

material A material B

material C

Figure 1: In MUESLI, a material is a factory class whose objects
are responsible for creating materialPoints. In the body of the
figure, three materials are responsible for creating, each of them,
25 material points. At creation, all the material points created by
the same material are identical.

testmueli, that runs all the tests on the material models and writes a log file,
testmuesli.log, with the output of the tests.

As indicated before, MUESLI is a self-contained library and needs no addi-
tional packages. The library makes heavy use of matrix and vector operations,
all of which are defined in the files mtensor.h and mtensor.cpp. Users that
rather employ the well-tested library eigen [2], can do so by modifying the
makefile as indicated therein. Obviously, in this case the eigen library must
be already installed in the computer.

MUESLI is a thread-safe library and it can be safely used in shared and
distributed memory computers. When all the update operations are done in
a distributed way, and all of these are completed before a new update, the
library can gain some speed by using a compiler library, as explained in the
makefile. By default, however, all the mechanisms are in-place to avoid any
kind of race conditions.

3 Main concepts

MUESLI is designed for the modeling of a wide range of materials at the
continuum level, and with diverse applications in mind. While the mechanical
behavior is the most developed one, thermal response is also implemented in
the current version, and others will be added in the future.

At the foundation of every class in MUESLI lie two abstract concepts namely,
the material and materialPoint parent classes. The first one embodies the

4

Figure 2: In MUESLI, the materialPoints change in time as their
state is modified by their history. Even if materialPoints of
the same type belong to the same class, their behaviors might be
different with time due to the changed state.

concept of abstract material, as entity which can spawn materialPoints and
hold common data for all the children. The second one is the one that represents
individual points in real continuum bodies: each of them having a specific
material constitutive behavior and also a current and past state consisting of
kinematic and/or thermodynamic variables. The two parent classes are, using
object oriented terminology, pure virtual classes. This means that they provide
the basic interface requirements for every single material and materialPoint

in MUESLI, but themselves can not be used to construct objects.
Figure 1 illustrates the concepts of material and materialPoint. When

creating a computational model of a continuum, the analyst must decide which
materials it is going to be made of. Then, by assigning a subdomain of the
analysis model a material, it implicitly entrusts the latter with the task of
creating materialPoints located on quadrature points, particles, etc., within
this subdomain, as required by the specific numerical method. In Figure 1,
three different materials, create materialPoints of three different kinds. At
their inception, all the materialPoints spawned by the same material are
identical.

As a result of the mechanical, thermal, chemical, etc., evolution in the body,
each of the materialPoints in a model changes its state. As schematically
illustrated by Figure 2, materialPoints of the same type can become different
and behave differently, even though their constitutive constants remain the
same, and actually stored in the parent material.

This distinction between material and materialPoint is central to MUESLI.
In a typical simulation, only a handful of materials exist, while thousands
of materialPoints are often allocated. For each of the specific classes of

5

material

conductorMaterial

finiteStrainMaterial

fluidMaterial

smallStrainMaterial

smallThermomechanicalMaterial

materialPoint

conductorMP

finiteStrainMP

fluidMP

smallStrainMP

smallThermomechanicalMP

Figure 3: Main material families as sub-classes of the parent class
material, and the corresponding material points sub-classes of
the parent class materialPoint.

materials defined in the library, a corresponding class of material point is
always defined. See section 6 for more details, as well as the appendices.

From the previous argument it follows that the concept of state plays
an important role in MUESLI. Specifically, the state of a materialPoint is
the data that the model requires to yield all possible information that might
be requested from it. It follows then that state depends of the constitutive
equations. In thermal points, for instance, the current value of the temperature
gradient needs to be stored; in finite strain material points, on the other hand,
at least the deformation gradient should be included in the state. For other
inelastic models, such as viscocplastic materials, more internal variables need
to be stored at the current instant, and possibly in past evaluation points.

The underlying structure of MUESLI is designed to optimize the performance
of iterative methods for nonlinear problems. Such solvers sometimes drift away
from the solution path and it is crucial that the model, and thus the material
points, have the ability to recall their past equilibrated states and to return
to them. In fact, the data structures of MUESLI are so flexible that many
previous equilibrated states could be stored in every point, if desired.

The design of MUESLI is such that it allows to work with materials for
very different boundary value problems (and also to implement new ones). For
this reason, the classes material and materialPoint are almost empty and
are designed only to provide a common inheritance for the library, and some
trivial convenience functions.

As illustrated in Figure 3, each of the two parent classes has (currently)
five sub-classes which are referred to as families. All of them refer to different
mechanical problems and although semantically related, have completely dif-

6

ferent interfaces and behavior. For example, one might need to use copper as
a material in an Engineering analysis. However, a conductorMaterial and a
smallStrainMaterial with the properties of copper are completely different
entities. The first one only know how heat flows as a response to temperature
gradients, while the second is ignorant about this process, while it should
be able to calculate the stress tensor for a given strain, among other tasks.
As detailed later in Section 6 and in the Appendices, the interfaces for the
material families are very different, and developers trying to add new materials
to MUESLI should concentrate on the process their analyses require.

4 Using MUESLI

MUESLI is designed to work in two ways, either as a library that can be
linked to one’s own simulation code or extending a commercial code material
simulation capabilities. In both situations, the MUESLI library needs to be
built and linked to the main program. However, the specific detail of how
MUESLI is used differ in the two cases.

First we indicate how MUESLI could be used when we have access to the
full source code of a simulation package written in C++ and we want to include
the material modeling capabilities of the library. To access these features, we
must link the library libmuesli.a to the code and include the header file
muesli.h everywhere we would like to use MUESLI’s functions.

We describe next the typical usage of the library. First, a material object
must be instantiated. A material is an object that encapsulates the data of
all the material points with the same constitutive response. According to this
idea, if a simulation of a steel structure is considered, and all the solids in it
are to be modeled with the same elastoplastic behavior, a single material of
the type splastic would need to the created. In this case, for example, the
code to create the material would be as follows:

#include "muesli.h"

using namespace muesli;

// first a material is created with all the nominal data

double E = 210e9, nu = 0.3, Y = 200.0e6, hiso = 100.0, hkine = 50.0;

smallstrainMaterial* theMaterial = new splastic("steel", E, nu, Y, hiso, hkine, "von_mises");

Once the material object exists, it can, among other things create material
points of its class. Following the previous example, once the splastic material
is allocated, it can be use to allocate many splasticMP, that is, material points
whose behavior is that of an elastoplastic material. This would be accomplished
with code like:

// the material spawns as many material points as needed

smallstrainMP* theMaterialPoint1 = theMaterial.createPoint();

7

smallstrainMP* theMaterialPoint2 = theMaterial.createPoint();

smallstrainMP* theMaterialPoint3 = theMaterial.createPoint();

In MUESLI, the difference between a “material” and a “material point” is that
the first, once it is created, it never changes; the second one, however, changes
its state depending on its history. In the previous example, for instance, each
of the materialMP can be different, depending on the strain history of each of
the points, which itself depends on the local deformation and loading process.

In every material class there are two ways of passing the information
the describes the properties of the material it represents. The first, and
most straightforward, uses a string — an arbitrary name that will be used
when printing the material information — and a sequence of constants with
predetermined meaning. In the example above, this sequence must be Young’s
modulus, Poisson’s ratio, yield stress, isotropic hardening, kinematic hardening,
and a string with the type of yield function. For the user’s convenience, MUESLI
defines the class materialProperties, a simple dictionary class that can hold
material parameters in a more flexible fashion. Objects in this class collect
data and their value (as double precision real numbers or strings). For example,
the material object in the example above could have been constructed in the
alternative way:

materialProperties mp;

mp["young"] = 210e9;

mp["poisson"] = 0.3;

mp["isotropich"] = 100.0;

mp["kinematich"] = 50.0;

mp["yieldstress"] = 200.0e6;

mp["model von_mises"] = 0.0

smallstrainMaterial* theMaterial = new splastic("steel", mp);

The keywords for the dictionary, which must be lowercase, are material depen-
dent and can be found in the appendices of this manual. Note, that in the case
of the plasticity model, its value, which is a string is added to the property
name after a space.

Once the material points exist, their state must be set according to the
local values of kinematic and thermodynamic variables. In the case of a
smallstrainMP, a point that has elastic or inelastic small strain behavior, the
state depends only of the history of the local value of the infinitesimal strain
tensor. The current state of the points is thus set using code such as:

// set the state to the material point

istensor epsilon(0.2, -0.1, 0.0, 0.0, 0.0, 0.0);

double theTime = 0.1;

theMaterialPoint1.updateCurrentState(theTime, epsilon);

8

epsilon = istensor(0.1, 0.7, 0.0, 0.0, 0.0, 0.0);

theMaterialPoint2.updateCurrentState(theTime, epsilon);

epsilon = istensor(0.0, -0.5, 0.0, 0.0, 0.3, 0.0);

theMaterialPoint3.updateCurrentState(theTime, epsilon);

Once the state of the material points is set, the user can request all kind of
information from them. For example, in a basic computation the user might
be interested in knowing the stored energy density, the stress, and the tensor
of elasticities at the points. The code responsible for these requests is:

// these are the output quantities

double energy;

istensor sigma;

double tg[3][3][3][3];

// and then request desired data

energy = theMaterialPoint1.storedEnergy();

theMaterialPoint1.stress(sigma);

theMaterialPoint1.tangent(tg);

energy = theMaterialPoint2.storedEnergy();

theMaterialPoint2.stress(sigma);

theMaterialPoint2.tangent(tg);

energy = theMaterialPoint3.storedEnergy();

theMaterialPoint3.stress(sigma);

theMaterialPoint3.tangent(tg);

In a typical computation, the state of each point changes while iterating for an
equilibrium solution (for example in a Newton-Raphson scheme). In that case,
the state needs to be set again, and the energy, stress and tangent, obtained
again:

// set again state to the material point

epsilon = istensor(0.23, -0.13, 0.0, 0.0, 0.0, 0.0);

theMaterialPoint1.updateCurrentState(theTime, epsilon);

epsilon = istensor(-0.6, 0.0, 1.1, 0.0, 0.0, 0.0);

theMaterialPoint2.updateCurrentState(theTime, epsilon);

epsilon = istensor(1.1, 0.0, 3.1, 4.1, 5.9, 0.0);

theMaterialPoint3.updateCurrentState(theTime, epsilon);

// again request material data

energy = theMaterialPoint1.storedEnergy();

theMaterialPoint1.stress(sigma);

9

theMaterialPoint1.tangent(tg);

energy = theMaterialPoint2.storedEnergy();

theMaterialPoint2.stress(sigma);

theMaterialPoint2.tangent(tg);

energy = theMaterialPoint3.storedEnergy();

theMaterialPoint3.stress(sigma);

theMaterialPoint3.tangent(tg);

Again, in a typical nonlinear solution, once equilibrium is reached, the state of
each of the points needs to be stored for future reference. In MUESLI, each
material point calls the function commitCurrentState that signals that the
last state set in the point corresponds to an equilibrated one.

// when the current state is equilibrated (to be determined elsewhere)

// commit the current state and proceed

theMaterialPoint1.commitCurrentState();

// set the state

theTime = 0.2;

epsilon(0,0) = 0.26;

epsilon(1,1) += 0.01;

theMaterialPoint1.updateCurrentState(theTime, epsilon);

// request desired data

theMaterialPoint1.stress(sigma);

energy = theMaterialPoint1.storedEnergy();

theMaterialPoint1.tangent(tg);

// set the state

epsilon(2,2) = 0.22;

epsilon(1,2) = epsilon(2,1) = 0.01;

theMaterialPoint2.updateCurrentState(theTime, epsilon);

// request the data

theMaterialPoint1.stress(sigma);

energy = theMaterialPoint2.storedEnergy();

theMaterialPoint1.tangent(tg);

theMaterialPoint1.commitCurrentState();

While using MUESLI in a nonlinear solution, it might happen that the iterative
scheme is unable to converge and needs to be restarted, possibly using a smaller
time step. In these cases, since the state of the material points is useless, one
might recover the last converged step simply by requesting a reset as in

// recover last converged states

theMaterialPoint1.resetCurrentState();

10

theMaterialPoint2.resetCurrentState();

theMaterialPoint3.resetCurrentState();

Finally, when the computations are over, each material point, and the material
itself must be deallocated:

// clean up at the very end

delete theMaterialPoint3;

delete theMaterialPoint2;

delete theMaterialPoint1;

delete theMaterial;

Needless to say, the actual use of MUESLI in a large scale computational
code involves the allocation/deallocation of thousands or millions of material
points which is routinely done looping through finite elements, or material
domains. The previous example just illustrates the general usage of the library.

We illustrate the use of MUESLI with a second example, one that is
distributed with the source code of the library. The source coude is as follows:

std::ofstream os("cyclictest.data");

const double E = 210e9; // Young’s modulus

const double nu = 0.33; // Poisson’s ratio

const double rho = 1.0; // density

const double Hiso = 1e9; // isotropic hardening modulus

const double Hkin = 2e9; // kinematic hardening modulus

const double Y0 = 100e6; // yield stress

const double alpha = 0.0; // not required

const std::string name = "mises";

muesli::splasticMaterial mat(E, nu, rho, Hiso, Hkin, Y0, alpha, name);

muesli::smallStrainMP* p = mat.createMaterialPoint();

istensor strain;

istensor shear;

shear(0,1) = shear(1,0) = 0.02;

unsigned npercycle = 20;

unsigned ncycles = 5;

for (unsigned i=0; i<ncycles*npercycle; i++)

{

double t = sin(((double)i)/npercycle*2.0*M_PI);

strain = shear*t;

p->updateCurrentState(i, strain);

istensor sigma; p->stress(sigma);

double tau = sigma(1,0);

double g = p->plasticSlip();

p->commitCurrentState();

11

os << "\n" << std::setw(8) << std::scientific

<< t << " " << strain(0,1) << " " << tau << " " << g;

}

os.close();

delete p;

return 0;

The example creates a small strain elastoplastic material, mat, which then
spawns a point p. This point is subjected to a cyclic shear deformation. After
each loading step, the strain component ε(1, 2), the shear stress σ(1, 2) and
the plastic slip are dumped to file for postprocessing.

-4

-3

-2

-1

0

1

2

3

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

σ
1
2
/
Y
0

ε12

0

0.005

0.01

0.015

0.02

0.025

0.03

-0.02 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02

γ

ε12

Figure 4: Cyclic test of an elastoplastic point. Top: the shear
strain-stress plot; bottom: the plastic slip γ as a function of the
shear strain.

12

5 Using MUESLI with a commercial code

MUESLI has been designed so that all its material models can be, in principle,
accessed from existing commercial codes, just by writing the appropriate
interface. The advantage of this approach is that one can write the constitutive
model functions using high level C++, and use them for both research and
commercial codes. While more interfaces could be devised in the future, in the
current version only the ones for LS-DYNA and Abaqus are provided.

Interfacing MUESLI and LS-DYNA

LS-DYNA is a simulation code of Livermore Software Technology Corporation
(http://www.lstc.com). It has many simulation capabilities for quasi-static
and transient simulations. In particular, it has a large material library for
metals, polymers, soils, etc.

Users are allowed to add new material models to LS-DYNA, and we take
advantage of this feature to interface this code with MUESLI. To do so, one
must obtain LS-DYNA’s package for user defined materials (downloadable
from the LSTC web page). In this package, one must edit the file dyna21.f

and modify material 43 (or any other one) as follows:

subroutine umat43(cm,eps,sig,epsp,hsv,dt1,capa,etype,tt,

1 temper,failel,crv,cma,qmat,elsiz,idele)

include ’nlqparm’

include ’bk06.inc’

include ’iounits.inc’

dimension cm(*),eps(*),sig(*),hsv(*),crv(lq1,2,*),cma(*),qmat(3,3)

logical failel

character*5 etype

if (ncycle.eq.1) then

if (cm(16).ne.1234567) then

call usermsg(’mat43’)

endif

endif

if (etype.eq.’solid’.or.etype.eq.’shl_t’.or.

1 etype.eq.’sld2d’.or.etype.eq.’tshel’.or.

2 etype.eq.’tet13’) then

if (cm(16).eq.1234567) then

call mitfail3d(cm,eps,sig,epsp,hsv,dt1,capa,failel,tt,crv)

else

if (.not.failel) then

c This is the call to muesli

call interface_lsdyna(cm,eps,sig,hsv,tt,epsp,temper,failel)

endif

end if

13

else

cerdat(1)=etype

call lsmsg(3,MSG_SOL+1150,ioall,ierdat,rerdat,cerdat,0)

endif

return

end

The LS-DYNA Makefile needs to be modified to include MUESLI. For
that, the library libmuesli.a should be added to the OBJECTS definition. If
required, the paths to this library should be added. After this, a new LS-
DYNA binary can be built, a binary that will now include all the capabilities
of MUESLI.

To use MUESLI’s material within a computation, we must indicate that the
material type (mt) is 43 (or another one, see above). In the data provided for
this material we must indicate which of MUESLI’s material is to be selected,
as well as any additional material parameters. For example, the following
command line in an LS-DYNA input file uses XXX

*MAT_USER_DEFINED_MATERIAL_MODELS_TITLE

muesli

$This material is an test for muesli

$# mid ro mt lmc nhv iortho ibulk ig

3 1000.0000 43 7 0 0 3 4

$# ivect ifail itherm ihyper ieos lmca unused unused

0 0 0 1 0 0

$# p1 p2 p3 p4 p5 p6 p7 p8

2.1000E+11 0.3300002.0588E+117.8940E+10 4.000000 0.0000 0.000 0.000

In MUESLI’s distribution, the directory examples contains several input files
for LS-DYNA that use MUESLI’s materials for linear and nonlinear, elastic
and inelastic materials.

Interfacing MUESLI and Abaqus/standard

Abaqus is a general-purpose finite element code developed by Abaqus Inc.,
acquired by Dassault Systèmes. Abaqus/standard is the part of Abaqus
responsible for implicit analyses, both quasistatic and transient, for linear and
nonlinear solids. In addition to the traditional elements of stress analysis,
the code now includes a wide range of additional features such as contact,
multibody components, coupled thermal effects, etc.

Abaqus/standard allows developers to add material models to the code
through user material subroutines (UMAT) that can be linked with the main
program. User subroutine UMATs are traditionally written in Fortran and
an interface needs to be developed to connect MUESLI and Abaqus. After
building libmuesli.a, it needs to be linked with Abaqus by modifying the
Abaqus environment file abaqus v6.env, where we must add the path and
library name as follows:

14

link_sl = (fortCmd +

" -cxxlib -fPIC -threads -shared " +

"%E -Wl,-soname,%U -o %U %F %A %L %B -parallel -Wl,-Bdynamic " +

"-i-dynamic -lifport -lifcoremt -L/usr/local/lib/ -lmuesli ")

Second, we use an UMAT to provide the interface between Abaqus and
MUESLI. In this Fortran file, a single line calls MUESLI, transferring all the
relevant variables to the library.

SUBROUTINE UMAT(STRESS,STATEV,DDSDDE,SSE,SPD,SCD,

1 RPL,DDSDDT,DRPLDE,DRPLDT,

2 STRAN,DSTRAN,TIME,DTIME,TEMP,DTEMP,PREDEF,DPRED,CMNAME,

3 NDI,NSHR,NTENS,NSTATV,PROPS,NPROPS,COORDS,DROT,PNEWDT,

4 CELENT,DFGRD0,DFGRD1,NOEL,NPT,LAYER,KSPT,KSTEP,KINC)

c

INCLUDE ’ABA_PARAM.INC’

DIMENSiON STRESS(NTENS),STATEV(NSTATV),

1 DDSDDE(NTENS,NTENS),DDSDDT(NTENS),DRPLDE(NTENS),

2 STRAN(NTENS),DSTRAN(NTENS),TIME(2),PREDEF(1),DPRED(1),

3 PROPS(NPROPS),COORDS(3),DROT(3,3),DFGRD0(3,3),DFGRD1(3,3)

character*80 CMNAME

integer matlabel

matlabel = 1

call interface_abaqus(CMNAME,matlabel,NOEL,NPT,COORDS,PROPS,NPROPS,

1 CELENT,TIME,DTIME,PNEWDT,STRAN,DSTRAN,DFGRD0,

1 DFGRD1,TEMP,DTEMP,STRESS,NTENS,DDSDDE,STATEV,

1 NSTATEV,SSE,SPD,KSTEP,KINC)

END

The interface file interface abaqus.cpp in MUESLI is responsible for
receiving the data and variables from the UMAT, converting it to its internal
format and calling the appropriate C++ methods of the library.

6 Class hierarchy outline

At the second level, there are specific material and materialPoints for each
of the boundary value problems that can be addressed with MUESLI. Currently,
there are

• smallStrainMaterial

• finiteStrainMaterial

15

• fluidMaterial

• conductorMaterial

• smallThermomechanicalMaterial

and their corresponding materialPoints. See figure 3. All of these are again
pure virtual classes, and define the interfaces of their child classes. The first
class, smallStrainMaterial, is designed to provide the interface to all mechani-
cal problems with small strain kinematics; the second, finiteStrainMaterial,
defines the interface to mechanical problems with finite strain kinematics;
fluidMaterial is the abstract class for fluid response; conductorMaterial
defines the interface for heat problems; smallThermomechanicalMaterial is
the interface for strongly coupled thermomechanical problems.

Each of these base classes has an interface that is different to that of the
others. The reason is that, despite all of them being abstractions of material
behavior, their intended use is fairly different. A finite element code for small
strain elastic and inelastic response only needs to access materials of the class
smallStrainMaterial. The interface declares, therefore, the minimum set of
functions that each specific material class must explicitly implement. This set
is completely different to the set of functions required to define the thermal
behavior in a heat transfer code, which itself should only access materials of
type conductorMaterial.

Depending on the field of application, a given simulation code often makes
use only of one or two types of materials. However, within this class, all
specific materials share the same interface. Going back to the example of
a finite element code for small strain analyses, the materials that the code
will access are all sub-classes of smallStrainMaterial, and they must all
implement the same update interface, as well as provide energies, stress, and
tangent computations. More details of the specifics will be provided later in
the document.

7 Automatic testing

Materials in MUESLI have functions that test the correctness of their formu-
lation, up to a certain extent. A testing binary testmuesli can be built as
indicated in Section 2. This program executes many tests in each material of
the library. Developers of new materials are encouraged to make as much use
as possible of this feature, for it provides a certain guarantee of the soundness
of the implementation. Of course,

The actual tests run for each material class depends on the family to which
it belongs. In general terms, the tests are designed to verify the consistency of
the programmed energies, gradients, and hessians. For example, for a small
strain elastic material, i.e., one belonging to the class elasticMaterial, there

16

must be a functions returning, for a given state, the stored energy density,
the stress, and the tensor of elasticities. In this case, the test will verify that
the stress is precisely the derivative of the energy with respect to the strain
and that the tensor of elasticities is, in turn, the derivative of the stress with
respect to the strain.

8 Extending MUESLI

MUESLI can be extended in three different ways:

• New materials can be added to any of the existing families. To do so
it suffices to derive a material and a materialPoint from the base
class of the family, and provide an implementation for the pure virtual
functions.

• Whole new families might be added. This can be done when the behavior
or the physics of the materials that are to be added do not fit within any
of the existing categories. Designing a new family is fairly more involved
than adding a single material because the interface has the be decided.
Existing classes for parent materials can serve as guidelines.

• New interfaces can be programmed for existing research or commercial
codes. This requires the study of the code’s requirements, and adapting
the latter to the functionality of MUESLI. In this case, new functions
should not be added to MUESLI, because this would invalidate the
material’s usefulness for other pre-existing interfaces.

9 Using MUESLI in parallel

MUESLI has been designed to work in parallel environments. Most of the times
a single processor will create the materials and materials points. Then, the
more costly updates and computations will be done in parallel, distributing the
material points among all available cores or machines. For instance, to perform
an update of the states in all of the material points, the driving program will
split the points, loop through all the points in each processing unit, and wait
until all loops have finished before proceeding, say, to compute stresses or
tangents.

If used in this way, MUESLI is thread safe. If for some reason there is no
guarantee that the material points are accessed independently, and that one
point might be called simultaneously from two processes requesting the update
and, for example, the stresses, a compiler option must be set to enforce the
thread-safety of the library. This option is activated simply by defining the
keyword STRICT THREAD SAFE in every compilation. The makefile included in
MUESLI’s distribution explains how this should be done for the Gnu compilers.

17

10 Contributing to MUESLI

One of the motivations for developing MUESLI has been enabling the possibility
of sharing code for material modeling. The open distribution of the library
contains several material models and interfaces, but researchers are encouraged
to contribute to the project by sending their classes, comments, and suggestions
to

muesli.materials@imdea.org

When a new material is submitted to be included in MUESLI, the author(s)
must make sure it passes all the tests, it there are any in the corresponding
material family. In addition, the source code should include the basic doc-
umentation that enables users to understand where the model comes from
(i.e., references), original developers, mathematical expressions, etc. Once it
is tested, the new files will be added to the library, with the corresponding
credits, noting that it will be subject to the same licence as the original source
code.

11 Licence and Developer team

IMDEA Materials is the owner of MUESLI, and the library is distributed under
GPL3.0 licence. Details of this licence are included in the software distribution,
in the file licence.txt. Additional information can be found in the web site
http://www.gnu.org/licenses.

The developers of MUESLI are: David Portillo, Daniel del Pozo, Daniel
Rodŕıguez, Javier Segurado, and Ignacio Romero.

18

A.1 Materials for thermal analysis

The class conductorMaterial defines the constitutive behaviour of material
subjected to heat flux. At the moment, the only thermal behavior considered
is given by an isotropic Fourier’s law in which the heat flux is proportional to
the temperature gradient, and the proportionality is defined by a scalar.

A.2 Materials for small strain mechanical analysis

The class smallStrainMaterial is defined for analyses of classical elasticity
and other small strain problems such as elastoplasticity, viscoelasticity, and
visco-elasto-plasticity. The classes currently implemented are elasticMaterial,
plasticMaterial, viscoelasticMaterial, and viscoplasticMaterial. The
base class, smallStrainMaterial is a pure virtual class (in smallstrain.cpp)
so only objects of the derived classes can be instantiated. The class (see
smallstrain.h) has the following definition:

class smallStrainMaterial : public muesli::material

{

public:

smallStrainMaterial();

smallStrainMaterial(const std::string& name,

const materialProperties& cl);

virtual ~smallStrainMaterial(){}

virtual bool check() const = 0;

virtual smallStrainMP* createMaterialPoint() const = 0;

virtual double density() const = 0;

virtual double getProperty(const propertyName p) const = 0;

virtual void print(std::ostream &of=std::cout) const = 0;

virtual void setRandom() = 0;

virtual bool test(std::ostream &of=std::cout) = 0;

virtual double waveVelocity() const = 0;

};

The first method in a smallStrainMaterial is check(), which servers to
verify if the material parameters are physically viable or consistent.

The main task of a any subclass of smallStrainMaterial is to spawn ma-
terial points of their corresponding type, and is the responsibility of the method
createMaterialPoint(). As set, for example, in the elasticMaterial class,
this function creates new material points, allocating their required memory
and initializing their state. All the materialPoints created by a material

share the same factory, and therefore the material parameters.
Small strain materials are subject to a series of tests that verify the

consistency of the implementation. These tests, described below, are driven by

19

smallStrainMaterial

elasticMaterial

plasticMaterial

viscoelasticMaterial

viscoplasticMaterial

smallStrainMP

elasticMP

plasticMP

viscoelasticMP

viscoplasticMP

Figure 5: Currently existing classes for small strain analyses.

the method test(). After randomly setting all the material parameters with
the function setRandom(), the test() function must create a materialPoint

in a random state and subject it to all the tests. See the structure of the test
function in, e.g., elasticMaterial.

The other virtual functions of the class are fairly straightforward and their
precise definition is easily understood by looking at their implementation in
existing smallStrainMaterials.

Each material point of a class derived from smallStrainMP must provide
the mechanical behavior its material constitutive law. This includes computing
the energy, stresses and tangents for each possible state, and some auxiliary
data. The actual functions that have to be programmed are:

virtual void setRandom() = 0;

// energies

virtual double deviatoricEnergy() const = 0;

virtual double dissipatedEnergy() const = 0;

virtual double storedEnergy() const = 0;

virtual double volumetricEnergy() const = 0;

// stress

virtual void stress(istensor& sigma) const = 0;

virtual double plasticSlip() const = 0;

// tangents

virtual void contractWithDeviatoricTangent(const ivector &v1,

const ivector &v2,

itensor &T) const = 0;

virtual void tangentTensor(double C[3][3][3][3]) const = 0;

virtual double volumetricStiffness() const = 0;

20

// uniaxial response

virtual double uniaxialStiffness() const = 0;

virtual double uniaxialStress() const = 0;

// bookkeeping

virtual void updateCurrentState(const double t,

const double strain11,

const double temp=0.0) = 0;

virtual void updateCurrentState(const double t,

const istensor& strain,

const double temp=0.0) = 0;

virtual void commitCurrentState() = 0;

virtual void resetCurrentState() = 0;

Once a smallStrainMP is created, its state must be set using one of the
updateCurrentState() functions; when desired, this state is stored with the
commitCurrentState() function. Also, the last stored solution can be recov-
ered with the resetCurrentState() method. See section 3 for an explanation
of the concepts associated with these functions.

After setting its state, a smallStrainMP can be queried for quantities of
mechanical interest, including energy, stresses, tangents, and internal variables.

The stored energy density is obtained with the function storedEnergy().
If the material has a deviatoric/volumetric decoupled stored energy, as in
most material, each of these contributions can be calculated with the functions
deviatoricEnergy() and volumetricEnergy(), respectively. The dissipation
in the last time step (starting at the last committed state and ending in the
current state) is obtained with the function dissipatedEnergy().

The function stress() computes the stress tensor at the current state.
The construction of the fourth order tensor of tangent elasticities is entrusted
to the function tangentTensor().

As in the three dimensional case, one-dimensional versions of the en-
ergy/stress/stiffness functions need to be provided.

In addition to the former, mandatory functions, smallStrainMP classes
might implement additional ones which might become useful in certain calcu-
lations. These are

virtual double pressure() const;

virtual void stressVector(double S[6]) const;

virtual void deviatoricStress(istensor& s) const;

virtual double plasticSlip() const = 0;

// tangents

virtual void contractWithTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

21

virtual void contractWithDeviatoricTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

virtual void tangentMatrix(double C[6][6]) const;

virtual double volumetricStiffness() const;

These are not pure virtual functions, so the parent class smallStrainMP

provides implementations for all of them which are based on the mandatory
functions. These surrogate implementations might be very slow for specific
material models so developers are encourage to implement the ones that are
more CPU demanding or more frequently employed.

All these ancillary functions perform tasks that are fairly evident from their
names and their arguments, except for the two methods contractWithTangent()
and contractWithDeviatoricTangent(). As explained in [3], when solving
linearized equations of equilibrium (whether in a finite element method or
in other scheme), the tangent of elasticities C is an expensive object to com-
pute which is, almost invariably, never used by itself but always pre- and
post-multiplied by a vector in operations of the form

Tik =
∑
j,l

Cijkl aj bl . (1)

Likewise, in mixed methods, the restriction of the tensor of elasticities to the
space of deviatoric tensors Cdev, is almost never employed by itself but rather
pre- and post-multiplied by vectors as in Eq. 1. The two methods indicated be-
fore, namely, contractWithTangent() and contractWithDeviatoricTangent(),
precisely provide these two operations. Although they can always be imple-
mented by calling the tangentTensor() function, and then performing the
contraction (1), it is far more efficient to program these function for each
material developed.

Elastic isotropic materials

The simplest small strain material is the elastic isotropic material. In MUESLI
these materials are implemented in the elasticIsotropicMaterial and
elasticIsotropicMP classes. This file should be consulted as the simplest
complete implementation provided in MUESLI.

To instantiate an elastic isotropic material, MUESLI provides two con-
structors. The first one creates an elasticMaterial from a name and three
constants, namely, Young’s modulus, Poisson’s ratio, and the density, as follows:

elasticIsotropicMaterial(const std::string& name,

const double E, const double nu,

const double rho);

Alternatively, a constructor can be employed with a name for the material
and a materialProperties dictionary. In this case, the name and meaning

22

Argument name Explanation

young Young’s modulus
poisson Poisson’s ratio
density Density

Table 1: Parameters for the constructor of an elasticMaterial.

of the labels that can be employed are indicated in Table ??. When choosing
this constructor, the elastic constants can be defined either with the pair
(lambda,mu) or with (young,nu).

Elastic anisotropic materials

The most general anisotropic materials are also implemented in the files
elastic.h and elastic.cpp with the class names anisotropicElasticMaterial
and anisotropicElasticMP, for the material point. They refer to elastic ma-
terials with a deformation independent stiffness tensor with only the major and
minor symmetries, requiring for its definition 21 constants. All the material
points created by a single material will have the same stiffness. If the tensor
needs to change its orientation depending, for example, on the coordinates of the
material point, the calling program will be responsible for rotating the strains,
stresses, and stiffness. With this in mind, the program that calls MUESLI sets
the strain in the local coordinate system, and then calls updateCurrentState.
Then, the stresses and stiffness tensor calculated by MUESLI will all be in the
local system. Once computed, the calling program can transform them to the
necessary coordinates by the appropriate transformation.

MUESLI offers two constructors for these materials. In the first constructor,
a string with a name and an array of 21 constants must be provided. The
components of the array have the interpretation explained in ??

A.3 Materials for finite strain mechanical analysis

The class finiteStrainMaterial implements the mechanical behavior of
materials employed in finite strain analyses. Similarly to their small strain
counterpart, these materials create finiteStrainMP that can be queried for
energies, stresses, tangent elasticities, etc. In contrast with the latter, finite
strain classes must provide a richer interface because all tensors (stresses,
strains, tangents) can refer to the reference or current configuration (or both!).

The class finiteStrainMaterial is, despite its apparent resemblance,
completely different to the class smallStrainMaterial. The kind of me-
chanical simulations that can be performed with either material classes are

23

Component Elastic stiffness

c[0] C11

c[1] C12 = C21

c[2] C13 = C31

c[3] C14 = C41

c[4] C15 = C51

c[5] C16 = C61

c[6] C22

c[7] C23 = C32

Table 2: Interpretation of the parameters in the constructor for an
elasticAnisotropicMaterial. Voigt notation is employed with
MUESLI’s convention 1→ 11, 2→ 22, 3→ 33, 4→ 12 = 21, 5→
32 = 23, 6→ 31 = 13.

finiteStrainMaterial

svkMaterial

fplasticMaterial

fisotropicMaterial

arrudaboyceMaterial

mooneyMaterial

neohookeanMaterial

finiteStrainMP

svkMP

fplasticMP

fisotropicMP

arrudaboyceMaterial

mooneyMaterial

neohookeanMaterial

Figure 6: Currently existing classes for finite strain mechanical
analyses.

completely different and it would make no sense to combine them or use them
in a related fashion.

In this version, MUESLI includes classes for elastic and inelastic, finite
strain materials. More specifically, these include svkMaterial (for Saint
Venant-Kirchhoff models), fplasticMaterial (for finite strain, elastoplas-
tic and viscoelastoplastic materials with von Mises criterion), and several
isotropic, elastic models collected under the class fisotropicMaterial, includ-
ing arrudaboyceMaterial (for compressible and incompressible Arruda-Boyce
model), mooneyMaterial (Mooney-Rivlin model) and neohookeanMaterial

24

(Neohookean model). MUESLI defines, for each of these models, the corre-
sponding material and materialPoint. See Figure 6 for an illustration.

The class finiteStrainMaterial is a pure virtual, parent class of the
material family. Its children should be used in boundary value problems of
nonlinear elasticity and inelasticity. The class declares the common interface
of all children, which is:

class finiteStrainMaterial : public muesli::material

{

public:

finiteStrainMaterial(const std::string& name,

const materialProperties& cl);

finiteStrainMaterial();

virtual ~finiteStrainMaterial(){}

virtual bool check() const;

virtual double characteristicStiffness() const = 0;

virtual double density() const;

virtual double getProperty(const propertyName p) const;

virtual void print(std::ostream &of=std::cout) const = 0;

virtual finiteStrainMP* createMaterialPoint() const = 0;

virtual void setRandom() = 0;

virtual double waveVelocity() const;

};

These functions have the same purpose as their homonymous in the class
smallStrainMaterial. As in the latter, the main purpose of the child objects
of finiteStrainMaterial is to call the function createMaterialPoint that
spawns a material point of the corresponding class.

The actual material behavior is encoded in the children of the class
finiteStrainMP. As advanced, every material point of these classes should
be able to, given its current and past states, compute its energies, stresses,
tangent elasticities, as well as some other ancillary quantities. The interface of
the class finiteStrainMP, listing all the possible functions, is

class finiteStrainMP : public muesli::materialPoint

{

public:

finiteStrainMP(const finiteStrainMaterial& m);

virtual ~finiteStrainMP(){}

bool testImplementation(std::ostream& of=std::cout,

const bool testDE=true,

const bool testDDE=true) const;

virtual void setRandom()=0;

25

// energy

virtual double dissipatedEnergy() const = 0;

virtual double energyDissipationPotential() const;

virtual double storedEnergy() const = 0;

// stresses

virtual void CauchyStress(istensor &sigma) const = 0;

virtual void CauchyStressVector(double sigma[6]) const;

virtual void energyMomentumTensor(const itensor& F,

itensor& S) const;

virtual void firstPiolaKirchhoffStress(itensor &P) const;

virtual void KirchhoffStress(istensor &tau) const;

virtual void KirchhoffStressVector(double tau[6]) const;

virtual void secondPiolaKirchhoffStress(istensor &S) const;

virtual void secondPiolaKirchhoffStressVector(double sigma[6]) const;

// elasticity tangents

virtual void convectedTangent(double c[3][3][3][3]) const{}

virtual void convectedTangentMatrix(double c[6][6]) const;

virtual void materialTangent(double c[3][3][3][3]) const = 0;

virtual void materialTangentMatrix(double c[6][6]) const;

virtual void spatialTangent(double c[3][3][3][3]) const;

virtual void spatialTangentMatrix(double c[6][6]) const;

// tangent contractions

virtual void contractWithAllTangents(const ivector &v1,

const ivector& v2,

itensor& Tdev,

istensor& Tmixed,

double& Tvol) const;

virtual void contractWithMaterialTangent(const ivector &v1,

const ivector& v2,

itensor &T) const;

virtual void contractWithSpatialTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

virtual void contractWithDeviatoricTangent(const ivector &v1,

const ivector& v2,

itensor &T) const;

virtual void contractWithMixedTangent(istensor& CM) const{};

virtual void materialTangentTimesSymmetricTensor(const istensor& M,

istensor& CM) const;

virtual double volumetricStiffness() const;

26

// for 1-dimensional problems

virtual double stress(const double stretch) const;

virtual double stiffness(const double stretch) const;

virtual double storedEnergy(const double stretch) const;

// bookkeeping

virtual void updateCurrentState(const double theTime,

const itensor& F);

virtual void commitCurrentState();

virtual void resetCurrentState();

virtual void getCurrentState(double& tc,

double* stc) const = 0;

virtual void setCurrentState(const double tc,

const double* stc) = 0;

virtual void getLastState(double& tn, const double* stc) const = 0;

virtual void setLastState(const double tn, const double* stc) = 0;

virtual int getNStateVariables() const = 0;

// miscellaneous

double density() const;

virtual double plasticSlip() const = 0;

virtual double waveVelocity() const;

const finiteStrainMaterial& parentMaterial() const;

}

The purpose of most of the functions in the class is self-explanatory, from their
names. As in the case of the class smallStainMP, the tangent contractions
refer to the operation (1).

A.4 Fluid materials

The class fluidMaterial is defined for analyses of fluids. The only class that is
currently implemented is newtonianMaterial. The base class, fluidMaterial
is a pure virtual class, so only objects of the derived classes can be instantiated.
The class (see fluid.h) has the following definition:

class fluidMaterial : public muesli::material

{

public:

fluidMaterial();

fluidMaterial(const std::string& name,

const materialProperties& cl);

virtual ~fluidMaterial() {}

27

virtual bool check() const = 0;

virtual fluidMP* createMaterialPoint() const = 0;

virtual double density() const = 0;

virtual double getProperty(const propertyName p) const = 0;

virtual double kinematicViscosity() const = 0;

virtual void print(std::ostream &of=std::cout) const = 0;

virtual void setRandom() = 0;

virtual bool test(std::ostream &of=std::cout) = 0;

virtual double waveVelocity() const = 0;

};

These functions are self-explanatory or have the same purpose as those
in the class smallStrainMaterials. As in the latter, the main task of any
subclass of fluidMaterial is to spawn material points of their corresponding
type.

The material behavior as well as its equation of state (EOS) are encoded in
the children of the class fluidMP. Each material point of a class derived from
fluidMP must provide the mechanical behavior its material constitutive law.
This includes computing the energy, stresses and tangents for each possible
state, and some auxiliary data. In addition, any fluidMP should be provided
by an EOS to be completely defined. The actual functions that have to be
programmed are:

virtual void setRandom() = 0;

virtual double density() const = 0;

// eos

virtual double pressure(eos theEOS,

std::vector<double> eosConst,

double rho,

double e) const;

virtual double energy (eos theEOS,

std::vector<double> eosConst,

double rho,

double p) const;

// energies

virtual double dissipatedEnergy() const = 0;

virtual double energyDissipation() const = 0;

virtual double deviatoricEnergy() const = 0;

virtual double volumetricEnergy() const = 0;

// stress

virtual double pressure() const = 0;

28

virtual void CauchyStress(istensor &sigma) const = 0;

virtual void deviatoricStress(istensor &sigma) const = 0;

virtual void volumetricStress(istensor &sigma) const = 0;

//tangents

virtual void contractWithTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

virtual void contractWithDeviatoricTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

virtual void tangentTensor(itensor4& C) const{};

// bookkeeping

virtual void updateCurrentState(const double t,

const itensor& gradu,

const double pressure) = 0;

virtual void updateCurrentState(const double t,

const itensor& gradu,

const double pressure,

const double rho) = 0;

virtual void commitCurrentState() = 0;

virtual void resetCurrentState() = 0;

The functions pressure() and energy() evaluate the direct and inverse
EOS respectively. theEOS variable stores the type of EOS defined for the fluid
and eosConst is a vector with the necessary EOS constants.

The function CauchyStress() computes the stress tensor at the current
state. The construction of the deriviative of the Cauchy stress tensor respect
to the strain rate tensor (symmetric part of the gradient of the velocity flow)
is entrusted to the function tangentTensor().

The rest of the functions are easily understood from their homonymus in
the smallStrainMP class. The overload of the updateCurrentState() is due
to the fact that, depending on the nature of the problem (compressible or
incompressible fluid), density must be updated or not.

As in the class smallStrainMP, in addition to the former, mandatory
functions, fluidMP classes might implement additional ones which might
become useful in certain calculations. These are

// tangents

virtual void contractWithTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

virtual void contractWithDeviatoricTangent(const ivector &v1,

const ivector &v2,

itensor &T) const;

29

A.5 Materials for coupled thermomechanics at
finite strains

The class fthermomechanicalMaterial models the strongly coupled thermo-
mechanical behaviour of materials at finite strains. These include thermoelastic,
thermoplastic, thermoviscoelastic, materials, among others.

Instead of constructing material models from scratch, objects in this class
include a finitestrainMaterial that is responsible for the purely mechanical
part of the response, and enhances this contribution with thermal and coupled
terms.

The thermomechanical potentials

Thermomechanical materials are defined in MUESLI with thermomechanical
potentials from which all other quantities are derived. Only one of these
potentials need to be defined, all the rest obtained by the corresponding
Legendre transform. The most convenient potential is often Helmholtz’s free
energy which can be written in incremental form as

Ψ(F , θ;F n, ξn, θn) = Wn(F ;F n, ξn) + ψtm(detF , θ) + ψt(θ) . (2)

The term Wn is an incremental potential for the purely mechanical response,
and can include inelastic effects. In MUESLI, the computation of this term
is delegated to a finitestrainMP. The potential ψtm refers to the coupled
mechanical-thermal energy, and ψt to the purely thermal contributions.

If θ0 is a reference temperature, the contributions for the coupled response
and thermal energy are often chosen to be of the form

ψtm(J, θ) = −3ακ(θ − θ0) log J , ψt(θ) = c0(θ − θ0 − θ log
θ

θ0
). (3)

In these relations α is the thermal expansion coefficient, κ is the bulk modulus,
c0 the heat capacity, and J = detF .

In addition to Helmholtz’s free energy, the basic quantities that need to be
provided by MUESLI are the first and second derivatives of this potential with
respect to its arguments.

The first derivatives of the free energy are (up to a sign change):

P =
∂ψ

∂F
, s = −∂ψ

∂θ
. (4)

The first derivative is the first Piola-Kirchhoff stress tensor, which will differ
from the stress in a purely mechanical material due to coupling contributions;
the second derivative corresponds to the thermodynamic definition of the
entropy. For the class of free energies defined above, the entropy evaluates to

s = −∂ψ
∂θ

= 3ακ log J + c0 log
θ

θ0
. (5)

30

MUESLI must also provide the three types of second derivatives of ψ,
namely,

A =
∂P

∂F
, M =

∂P

∂θ
, c = −θ∂

2ψ

∂θ2
. (6)

The fourth order tensor A is the material consistent tangent; the tensor M
is the tensor of thermomechanical coupling; finally, c is the heat capacity at
constant deformation.

Bibliography

[1] ABAQUS. Dassault Systèmes. http://www.3ds.com/products-
services/simulia/products/abaqus/.

[2] EIGEN: a C++ template library for linear algebra: matrices, vectors,
numerical solvers, and related algorithms. http://eigen.tuxfamily.org/.

[3] J Planas, I Romero, and J M Sancho. B free. Computer Methods in Applied
Mechanics and Engineering, 217-220:226–235, 2012.

31

	Contents
	Introduction
	Instaling MUESLI
	Main concepts
	Using MUESLI
	Using MUESLI with a commercial code
	Class hierarchy outline
	Automatic testing
	Extending MUESLI
	Using MUESLI in parallel
	Contributing to MUESLI
	Licence and Developer team
	Materials for thermal analysis
	Materials for small strain mechanical analysis
	Materials for finite strain mechanical analysis
	Fluid materials
	Materials for coupled thermomechanics at finite strains

	Bibliography

