Skip to main content
Log in

Cupric ion decorated ammonium polyphosphate as an effective flame retardant for thermoplastic polyurethane

  • Polymers & biopolymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Inspired by the significant synergistic charring effect and catalytic graphitizing effect of metal ion, cupric ion decorated ammonium polyphosphate (APP@Cu) was prepared to improve the fire safety of thermoplastic polyurethane (TPU). The characterization on micromorphology, chemical composition and structure of APP@Cu confirmed that copper hydroxide was decorated on the surface of APP. Comparing for TPU/APP, TPU/APP@Cu achieved a higher LOI value of 28.2% and reached UL-94 V-0 rating. What’s more, the peak of heat release rate, total smoke production and the fire growth rate significantly reduced by 72%, 36% and 76%, respectively, in comparison with that of TPU. These results demonstrated that APP@Cu preferably magnified the flame-retardant efficiency of APP for TPU due to the synergistic charring effect of phosphorus and cupric ion, and the catalytic graphitizing effect of copper species. Therefore, the enhancing char-forming mechanism would provide a strategy for improving the fire safety of TPU.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Data availability

All of the data and materials are owned by the authors and no permissions are required.

References

  1. Xue Y, Lin J, Wan T, Luo Y, Ma Z, Zhou Y, Tuten BT, Zhang M, Tao X, Song P (2023) Stretchable, ultratough, and intrinsically self-extinguishing elastomers with desirable recyclability. Adv Sci 10:e2207268. https://doi.org/10.1002/advs.202207268

    Article  CAS  Google Scholar 

  2. Liu L, Zhu M, Shi Y, Xu X, Ma Z, Yu B, Fu S, Huang G, Wang H, Song P (2021) Functionalizing MXene towards highly stretchable, ultratough, fatigue- and fire-resistant polymer nanocomposites. Chem Eng J 424:130338. https://doi.org/10.1016/j.cej.2021.130338

    Article  CAS  Google Scholar 

  3. Jin Y, Huang G, Han D, Song P, Tang W, Bao J, Li R, Liu Y (2016) Functionalizing graphene decorated with phosphorus-nitrogen containing dendrimer for high-performance polymer nanocomposites. Compos A Appl Sci Manuf 86:9–18. https://doi.org/10.1016/j.compositesa.2016.03.030

    Article  CAS  Google Scholar 

  4. Liu L, Xu Y, He Y, Xu M, Shi Z, Hu H, Yang Z, Li B (2019) An effective mono-component intumescent flame retardant for the enhancement of water resistance and fire safety of thermoplastic polyurethane composites. Polym Degrad Stab 167:146–156. https://doi.org/10.1016/j.polymdegradstab.2019.07.006

    Article  CAS  Google Scholar 

  5. Li D, Liu L, Zhang Z, Xu M, Xu Y, Qian L (2021) An urethane-based phosphonate ester for improving flame retardancy and smoke suppression of thermoplastic polyurethane. Polym Degrad Stab 188:109568. https://doi.org/10.1016/j.polymdegradstab.2021.109568

    Article  CAS  Google Scholar 

  6. Cui YY, Xu ZS, Li YX, Lang XR, Zong CZ, Cao L (2022) Synergistic thermodynamic compatibility of polydimethylsiloxane block in thermoplastic polyurethane for flame retardant materials: super flexible, highly flame retardant and low smoke release. Polymer 253:124976. https://doi.org/10.1016/j.polymer.2022.124976

    Article  CAS  Google Scholar 

  7. Liu C, Xu K, Shi Y, Wang J, Ma S, Feng Y, Lv Y, Yang F, Liu M, Song P (2022) Fire-safe, mechanically strong and tough thermoplastic polyurethane/MXene nanocomposites with exceptional smoke suppression. Mater Today Phys 22:100607. https://doi.org/10.1016/j.mtphys.2022.100607

    Article  CAS  Google Scholar 

  8. Shi Y, Liu C, Duan Z, Yu B, Liu M, Song P (2020) Interface engineering of MXene towards super-tough and strong polymer nanocomposites with high ductility and excellent fire safety. Chem Eng J 399:125829. https://doi.org/10.1016/j.cej.2020.125829

    Article  CAS  Google Scholar 

  9. Liu BW, Zhao HB, Wang YZ (2021) Advanced flame-retardant methods for polymeric materials. Adv Mater 34:2107905. https://doi.org/10.1002/adma.202107905

    Article  CAS  Google Scholar 

  10. He L, Chen T, Zhang Y, Hu LR, Wang T, Han R, He JL, Luo W, Liu ZG, Deng JN, Chen MJ (2022) Imide-DOPO derivative endows epoxy resin with excellent flame retardancy and fluorescence without losing glass transition temperature. Compos Part B Eng 230:109553. https://doi.org/10.1016/j.compositesb.2021.109553

    Article  CAS  Google Scholar 

  11. Tao Y, Liu C, Li P, Wang B, Xu YJ, Jiang ZM, Liu Y, Zhu P (2021) A flame-retardant PET fabric coating: flammability, anti-dripping properties, and flame-retardant mechanism. Prog Organ Coat 150:105971. https://doi.org/10.1016/j.porgcoat.2020.105971

    Article  CAS  Google Scholar 

  12. Shi XH, Li XL, Li YM, Li Z, Wang DY (2022) Flame-retardant strategy and mechanism of fiber reinforced polymeric composite: a review. Compos Part B Eng 233:109663. https://doi.org/10.1016/j.compositesb.2022.109663

    Article  CAS  Google Scholar 

  13. Huo S, Song P, Yu B, Ran S, Chevali VS, Liu L, Fang Z, Wang H (2021) Phosphorus-containing flame retardant epoxy thermosets: recent advances and future perspectives. Prog Polym Sci 114:101366. https://doi.org/10.1016/j.progpolymsci.2021.101366

    Article  CAS  Google Scholar 

  14. Jiang Q, Li P, Liu Y, Zhu P (2022) Green flame-retardant flexible polyurethane foam based on polyphenol-iron-phytic acid network to improve the fire safety. Compos Part B Eng. https://doi.org/10.1016/j.compositesb.2022.109958

    Article  Google Scholar 

  15. Jia P, Zhu Y, Lu J, Wang B, Song L, Wang B, Hu Y (2022) Multifunctional fireproof electromagnetic shielding polyurethane films with thermal management performance. Chem Eng J 439:135673. https://doi.org/10.1016/j.cej.2022.135673

    Article  CAS  Google Scholar 

  16. Rao W, Shi J, Yu C, Zhao HB, Wang YZ (2021) Highly efficient, transparent, and environment-friendly flame-retardant coating for cotton fabric. Chem Eng J 424:130556. https://doi.org/10.1016/j.cej.2021.130556

    Article  CAS  Google Scholar 

  17. Shi Y, Yao A, Han J, Wang H, Feng Y, Fu L, Yang F, Song P (2023) Architecting fire safe hierarchical polymer nanocomposite films with excellent electromagnetic interference shielding via interface engineering. J Colloid Interface Sci 640:179–191. https://doi.org/10.1016/j.jcis.2023.02.085

    Article  CAS  Google Scholar 

  18. Deng CL, Du SL, Jing Z, Shen ZQ, Cong D, Wang YZ (2014) An intumescent flame retardant polypropylene system with simultaneously improved flame retardancy and water resistance. Polym Degrad Stab 108:97–107. https://doi.org/10.1016/j.polymdegradstab.2014.06.008

    Article  CAS  Google Scholar 

  19. Shi XH, Liu QY, Li XL, Du AK, Niu JW, Li YM, Li Z, Wang M, Wang DY (2022) Construction phosphorus/nitrogen-containing flame-retardant and hydrophobic coating toward cotton fabric via layer-by-layer assembly. Polym Degrad Stab 197:109839. https://doi.org/10.1016/j.polymdegradstab.2022.109839

    Article  CAS  Google Scholar 

  20. Huang SC, Deng C, Wang SX, Wei WC, Chen H, Wang YZ (2019) Electrostatic action induced interfacial accumulation of layered double hydroxides towards highly efficient flame retardance and mechanical enhancement of thermoplastic polyurethane/ammonium polyphosphate. Polym Degrad Stab 165:126–136. https://doi.org/10.1016/j.polymdegradstab.2019.05.006

    Article  CAS  Google Scholar 

  21. Chen X, Jiang Y, Jiao C (2014) Smoke suppression properties of ferrite yellow on flame retardant thermoplastic polyurethane based on ammonium polyphosphate. J Hazard Mater 266:114–121. https://doi.org/10.1016/j.jhazmat.2013.12.025

    Article  CAS  Google Scholar 

  22. Liu X, Sun J, Zhang S, Guo J, Tang W, Li H, Gu X (2019) Effects of carboxymethyl chitosan microencapsulated melamine polyphosphate on the flame retardancy and water resistance of thermoplastic polyurethane. Polym Degrad Stab 160:168–176. https://doi.org/10.1016/j.polymdegradstab.2018.12.019

    Article  CAS  Google Scholar 

  23. Wan L, Deng C, Chen H, Zhao ZY, Huang SC, Wei WC, Yang AH, Zhao HB, Wang YZ (2021) Flame-retarded thermoplastic polyurethane elastomer: from organic materials to nanocomposites and new prospects. Chem Eng J. https://doi.org/10.1016/j.cej.2021.129314

    Article  Google Scholar 

  24. Chen H, Deng C, Zhao ZY, Huang SC, Wei YX, Wang YZ (2020) Novel alkynyl-containing phosphonate ester oligomer with high charring capability as flame retardant additive for thermoplastic polyurethane. Compos Part B Eng 199:108315. https://doi.org/10.1016/j.compositesb.2020.108315

    Article  CAS  Google Scholar 

  25. Chen H, Deng C, Zhao ZY, Wan L, Yang AH, Wang YZ (2020) Novel piperazine-containing oligomer as flame retardant and crystallization induction additive for thermoplastics polyurethane. Chem Eng J 400:125941. https://doi.org/10.1016/j.cej.2020.125941

    Article  CAS  Google Scholar 

  26. Xu S, Liu J, Liu X, Li H, Gu X, Sun J, Zhang S (2022) Preparation of Ni-Fe layered double hydroxides and its application in thermoplastic polyurethane with flame retardancy and smoke suppression. Polym Degrad Stab 202:110043. https://doi.org/10.1016/j.polymdegradstab.2022.110043

    Article  CAS  Google Scholar 

  27. Piao J, Lai Y, Ren J, Wang Y, Feng T, Wang Y, Liu W, Dong H, Chen W, Jiao C, Chen X (2022) Zn-doped carbon microspheres as synergist in intumescent flame-retardant thermoplastic polyurethane composites: mechanism of char residues layer regulation. Compos Commun 32:101173. https://doi.org/10.1016/j.coco.2022.101173

    Article  Google Scholar 

  28. Li H, Meng D, Qi P, Sun J, Li H, Gu X, Zhang S (2022) Fabrication of a hybrid from metal organic framework and sepiolite (ZIF-8@SEP) for reducing the fire hazards in thermoplastic polyurethane. Appl Clay Sci 216:106376. https://doi.org/10.1016/j.clay.2021.106376

    Article  CAS  Google Scholar 

  29. Zhang J, Kong Q, Yang L, Wang DY (2016) Few layered Co(OH)2 ultrathin nanosheet-based polyurethane nanocomposites with reduced fire hazard: from eco-friendly flame retardance to sustainable recycling. Green Chem 18:3066–3074. https://doi.org/10.1039/c5gc03048j

    Article  CAS  Google Scholar 

  30. Liu C, Li P, Xu YJ, Liu Y, Zhu P, Wang YZ (2022) Bio-based nickel alginate toward improving fire safety and mechanical properties of epoxy resin. Polym Degrad Stab 200:109945. https://doi.org/10.1016/j.polymdegradstab.2022.109945

    Article  CAS  Google Scholar 

  31. Liu C, Li P, Xu YJ, Liu Y, Zhu P (2023) Synergistic effects of iron alginate on improving the fire safety and mechanical properties of epoxy resin/ammonium polyphosphate composites. Macromol Mater Eng 308:2200516. https://doi.org/10.1002/mame.202200516

    Article  CAS  Google Scholar 

  32. Shao ZB, Zhang J, Jian RK, Sun CC, Li XL, Wang DY (2021) A strategy to construct multifunctional ammonium polyphosphate for epoxy resin with simultaneously high fire safety and mechanical properties. Compos Part A Appl Sci Manuf 149:106529. https://doi.org/10.1016/j.compositesa.2021.106529

    Article  CAS  Google Scholar 

  33. Shao ZB, Cui J, Li XL, Díaz Palencia JL, Wang DY (2021) Chemically inorganic modified ammonium polyphosphate as eco-friendly flame retardant and its high fire safety for epoxy resin. Compos Commun 28:123940. https://doi.org/10.1016/j.coco.2021.100959

    Article  Google Scholar 

  34. Zhao X, Chen L, Li DF, Fu T, He L, Wang XL, Wang YZ (2021) Biomimetic construction peanut-leaf structure on ammonium polyphosphate surface: improving its compatibility with poly(lactic acid) and flame-retardant efficiency simultaneously. Chem Eng J 412:128737. https://doi.org/10.1016/j.cej.2021.128737

    Article  CAS  Google Scholar 

  35. Ma C, Zhu L, Qiao X, Li H, Zhu X, Xue J, Xue Q (2021) Ni-doped brochantite@copper hydroxide hierarchical structures on copper mesh with ultrahigh oil-resistance for high-efficiency oil/water separation. Surf Coat Technol 406:126642. https://doi.org/10.1016/j.surfcoat.2020.126642

    Article  CAS  Google Scholar 

  36. Ye TP, Liao SF, Zhang Y, Chen MJ, Xiao Y, Liu XY, Liu ZG, Wang DY (2019) Cu(0) and Cu(II) decorated graphene hybrid on improving fireproof efficiency of intumescent flame-retardant epoxy resins. Compos Part B Eng 175:107189. https://doi.org/10.1016/j.compositesb.2019.107189

    Article  CAS  Google Scholar 

  37. Shi XH, Chen L, Zhao Q, Long JW, Li YM, Wang YZ (2020) Epoxy resin composites reinforced and fire-retarded by surficially-treated carbon fibers via a tunable and facile process. Compos Sci Technol 187:107945. https://doi.org/10.1016/j.compscitech.2019.107945

    Article  CAS  Google Scholar 

  38. Zhang Y, Chu C, Xu Y, Ma Z, Han H (2022) Bimetallic catalyst derived from copper cobalt carbonate hydroxides mediated ZIF-67 composite for efficient hydrogenation of 4-nitrophenol. Coll Surf A Physicochem Eng Asp 641:128477. https://doi.org/10.1016/j.colsurfa.2022.128477

    Article  CAS  Google Scholar 

  39. Bhusari R, Thomann JS, Guillot J, Leturcq R (2021) Morphology control of copper hydroxide based nanostructures in liquid phase synthesis. J Cryst Growth 570:126225. https://doi.org/10.1016/j.jcrysgro.2021.126225

    Article  CAS  Google Scholar 

  40. Shi XH, Xu YJ, Long JW, Zhao Q, Ding XM, Chen L, Wang YZ (2018) Layer-by-layer assembled flame-retardant architecture toward high-performance carbon fiber composite. Chem Eng J 353:550–558. https://doi.org/10.1016/j.cej.2018.07.146

    Article  CAS  Google Scholar 

  41. Wei WC, Deng C, Huang SC, Wei YX, Wang YZ (2018) Nickel-Schiff base decorated graphene for simultaneously enhancing the electroconductivity, fire resistance, and mechanical properties of a polyurethane elastomer. J Mater Chem A 6:8643–8654. https://doi.org/10.1039/c8ta01287c

    Article  CAS  Google Scholar 

  42. Shi Y, Liu C, Fu L, Feng Y, Lv Y, Wang Z, Liu M, Chen Z (2021) Highly efficient MXene/Nano-Cu smoke suppressant towards reducing fire hazards of thermoplastic polyurethane. Compos Part A Appl Sci Manuf 150:106600. https://doi.org/10.1016/j.compositesa.2021.106600

    Article  CAS  Google Scholar 

  43. Liu C, Li P, Xu YJ, Liu Y, Zhu P (2023) Nickel alginate-enhanced fire safety of aluminum diethylphosphinate on epoxy resin. J Appl Polym Sci 140:e53552. https://doi.org/10.1002/app.53552

    Article  CAS  Google Scholar 

  44. Shi XH, Liu QY, Li XL, Yang SY, Wang DY (2022) Simultaneously improving the fire safety and mechanical properties of epoxy resin with iron phosphonated grafted polyethylenimine. Polym Degrad Stab 206:110173. https://doi.org/10.1016/j.polymdegradstab.2022.110173

    Article  CAS  Google Scholar 

  45. Shi XH, Wu SJ, Xie WM, Li XL, Liu QY, Jimena De La Vega, Wang DY (2023) Fabrication of layered double hydroxide@ferric decorated polyphosphazene hybrid architecture towards simultaneously improved fire safety, smoke suppression and mechanical strength of epoxy resin, Compos Part A Appl S Manuf 468: 107602. https://doi.org/10.1016/j.compositesa.2023.107602

    Article  Google Scholar 

  46. Zhang S, Wang X, Ding M, Huang Y, Li L, Wang M (2022) In-situ incorporation of metal phytates for green and highly efficient flame-retardant wood with excellent smoke-suppression property. Ind Crops Prod 187:115287. https://doi.org/10.1016/j.indcrop.2022.115287

    Article  CAS  Google Scholar 

  47. Li XL, Shi XH, Chen MJ, Liu QY, Li YM, Li Z, Huang YH, Wang DY (2022) Biomass-based coating from chitosan for cotton fabric with excellent flame retardancy and improved durability. Cellulose 29:5289–5303. https://doi.org/10.1007/s10570-022-04566-x

    Article  CAS  Google Scholar 

  48. Jiang Q, Li P, Liu Y, Zhu P (2022) Flame retardant cotton fabrics with anti-UV properties based on tea polyphenol-melamine-phenylphosphonic acid. J Colloid Interface Sci 629:392–403. https://doi.org/10.1016/j.jcis.2022.09.084

    Article  CAS  Google Scholar 

  49. Liu C, Li P, Xu YJ, Liu Y, Zhu P, Wang YZ (2022) Epoxy/iron alginate composites with improved fire resistance, smoke suppression and mechanical properties. J Mater Sci 57:2567–2583. https://doi.org/10.1007/s10853-021-06671-x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The research was financially supported by National Natural Science Foundation of China (22205028), Natural Science Foundation Project of Chongqing, Chongqing Science and Technology Commission (cstc2021jcyj-msxmX0370), the Science and Technology Research Program of Chongqing Municipal Education Commission (KJQN202200711), National College Students Innovation and Entrepreneurship Training Program (202210618001), The Key Laboratory of Flame Retardancy Finishing of Textile Materials, CNTAC (kf2022-003), and International Science and Technology Cooperation and Exchange Program of Sichuan Science and Technology Department (211552).

Author information

Authors and Affiliations

Authors

Contributions

XHS Conceptualization; Data curation; Formal analysis; Data analysis; Draft writing; Manuscript revision; Project administration. SJW Sample preparation; Data curation; Formal analysis; Data analysis. WMX Sample preparation; Data curation; Formal analysis; Data analysis. QYL Sample preparation; Data curation; Formal analysis; Data analysis. SYY Data curation; Formal analysis. JH Sample testing; Data analysis. DYW Conceptualization; Formal analysis; Supervision; Manuscript revision.

Corresponding authors

Correspondence to Xiao-Hui Shi or De-Yi Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Ethical approval

All authors state that they adhere to the Ethical Responsibilities of Authors. In addition, the work is compliance with ethical standards.

Additional information

Handling Editor: Jaime Grunlan.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 518 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, XH., Wu, SJ., Xie, WM. et al. Cupric ion decorated ammonium polyphosphate as an effective flame retardant for thermoplastic polyurethane. J Mater Sci 58, 9060–9072 (2023). https://doi.org/10.1007/s10853-023-08554-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-023-08554-9

Navigation