Seminar of Prof. Jesus Barrio, from the Ben-Gurion University (Israel), entitle “Rational Design of Carbon Nitride Materials by Supramolecular Preorganization of Monomers” – At 11:00 am in the Seminar Room

Abstract

Over the past few years, graphitic carbon nitride (g-CN) has attracted widespread attention due to its outstanding electronic properties, which have been exploited in various applications, including in photo- and electro-catalysis, heterogeneous catalysis, CO2 reduction, water splitting, light-emitting diodes, and solar cells. g-CN comprises only carbon and nitrogen, and it can be synthesized by several routes. The synthesis of this material can be carried out by polymerization of C and N rich monomers, such like cyanamide, dicyanamide or melamine (1,2).

However, the traditional solid state reaction usually yields unordered materials with grain boundaries and low photo-catalytic activity. Recently, we showed a new synthetic path based on the supramolecular preorganization of g-CN monomers by using non-covalent interactions prior their calcinations at high temperatures. The new path results in highly active materials for photocatalytic applications (3-5).

Here we show that by clever design of supramolecular assemblies we can control the chemical, photophysical and catalytic properties of g-CN toward its utilization as photocatalyst for various reactions (6). The supramolecular interactions between different starting monomers at different condition (i.e. solvents),(7) and their role on the materials growth and chemical, photophysical and catalytic properties will be discussed. This work provides new opportunities for the rational design of carbon nitride based photocatalysts for environmental and energy related applications.

References

1. Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater., 2009, 8, 76-80.

2. Thomas, A.; Fischer, A.; Goettman, F.; Antonietti, M.; Muller, J.; Schlogl, R.; Carlsson, J. M. J. Mater. Chem., 2008, 18, 4893-4908.

3. Shalom, M.; Inal, S.; Ferrkenhauer, C.; Neher, D.; Antonietti, M. J. Am. Chem. Soc. 2013, 135, 7118-7121.

4. Barrio, J.; Shalom, M. ChemCatChem 2018, DOI:10.1002/cctc.201801410.

5. Volokh, M.; Peng, G.; Barrio, J.; Shalom, M. Angew. Chem. Int. Ed. 2018, DOI:10.1002/anie.201806514.

6. Barrio, J; Lin, L.; Amo-Ochoa, P.; Peng, G.; Tzadikov, J.; Zamora, F.; Wang, X.; Shalom, M. Small 2018, 14, 1800633.

7. Peng, G.; Xing, L.; Barrio, J.; Volokh, M.; Shalom, M. Angew. Chem. Int. Ed. 2018, 57, 1186-1192.