Seismic detection system

Patent details


Spanish patent granted 
PCT filed

Publication and PCT application numbers

ES2913295 B2

Priority date

28 December 2021


De-Yi Wang, Abdulmalik Yusuf, José Sánchez del Río


IMDEA Materials Institute, UPM

Transfer opportunity

License of technology


IMDEA Materials and UPM have developed a sensor device to detect different types of seismic waves and communicate data signals in real-time.


Vibration is one of the sources of mechanical energy that manifests itself in various aspects of everyday life, such as the study of seismic movements. Through different devices, vibrations are translated into electric signals which can then interpreted and analysed.

Currently, vibrations produced during seismic events like earthquakes or volcano activity, are transformed into electric energy through different types of transductors (resistive, capacitive, piezoelectric, electromagnetic, etc.), and GPS and microelectromechanic systems (MEMs) are also used as seismic sensors. However, they fail to combine high sensitivity for high and low frequency earth movements. Others like optic fibre may suffer structural damage and more conventional ones such as seismographs only detect movement in one of the three spatial dimensions.

Triboelectric nanogenerators (TENGs) can also be used to generate energy from vibrations. However, they are normally designed with loose elements, which reduces their robustness, especially for this specific application in which strong vibrations can affect the integrity of those loose elements and in turn, the reliability of the seismic signal readings.

Researchers from the IMDEA Materials Institute and the Polytechnic University of Madrid have designed a TENG based system integrated in a single piece, that produces extremely accurate seismic readings when submitted to vibrations in the range of 20 Hz to 500 Hz.

Advantages and innovations

The geometrical features of this seismic detection system allow the detection and differentiation of seismic waves in the three spatial dimensions at larger frequency intervals that current individual devices used for this application.

The device is able to detect and quantify different physical magnitudes of seismic waves such as velocity, acceleration, strength, displacement, frequency, allowing a thorough characterization of these waves.

A diversity of materials has been employed to manufacture this device and tailor its design to different applications such as volcanoes (high heat and flame resistance), underwater (high pressure and corrosive environment), environments with high humidity, etc.

Also, the system functions as a short-range wireless transmitter capable of communicating data signals in real-time.

Relevant publications

[1] High-resolution TENGS for earthquakes ground motion detection.

José Sánchez del Río, Abdulmalik Yusuf, Xiang Ao, Ignacio Astarloa Olaizola, Lucía Urbelz López-Puertas, María Yolanda Ballesteros, Romano Giannetti, Vanesa Martínez, José Luis Jiménez, José Benito Bravo Monge, Xiaosui Chen, De-Yi Wang

Nano Energy, Volume 102, November 2022, 107666. DOI:


Knowledge & Technology Transfer Department, IMDEA Materials Institute


telephone: +34 91 5493422