Catalysis and Energy Materials
- Research Interests
- Academic Career
- Honours and Awards
- Publications
- Open Postitions
Dr. Tüysüz’s research focuses on designing and developing functional halide perovskite structures for solar energy conversion, as well as tailoring nanoscale materials for catalytic transformations such as water electrolysis for green hydrogen generation, thermocatalytic CO2 conversion, and catalytic plastic recycling. The motivation behind the research line is to advance understanding of the structure-activity relationships in the field of heterogeneous catalysis and materials science. One of our main strategies involves developing sustainable synthetic and catalytic processes by precisely controlling the key physicochemical properties of advanced energy materials at the atomic and nanoscale, using both top-down and bottom-up approaches.
10 Selected Recent Publications:
- Acc. Chem. Res. 2024, 57, 558, https://doi.org/10.1021/acs.accounts.3c00709
- Angew. Chem. Int. Ed. 2024, 63, e202404496, https://doi.org/10.1002/anie.202404496
- Angew. Chem. Int. Ed. 2024, 63, e202316110, https://doi.org/10.1002/ange.202316110
- Nature Commun. 2023, 14, 570, https://doi.org/10.1038/s41467-023-36088-w
- J. Am. Chem. Soc. 2023, 145, 19768, https://doi.org/10.1021/jacs.3c05412
- Angew. Chem. Int. Ed. 2023, 135, e202218189, https://doi.org/10.1002/anie.202218189
- J. Am. Chem. Soc. 2022, 144, 21232, https://doi.org/10.1021/jacs.2c08845
- Angew. Chem. Int. Ed. 2022, 61, e202211543, https://doi.org/10.1002/anie.202211543
- Angew. Chem. Int. Ed. 2020, 59, 16544, https://doi.org/10.1002/anie.202003801
- Angew. Chem. Int. Ed. 2020, 59, 5788, https://doi.org/10.1002/ange.201915034
- 2024 – Ongoing: Head of Catalysis and Energy Materials Group at IMDEA Materials Institute, Spain
- 2020 – 2024: Max Planck Research Group Leader at Max-Planck-Institut für Kohenforschung, Germany
- 2016: Habilitation at the Ruhr-University Bochum, Germany
- 2012 – 2019: Group Leader at the Max-Planck-Institut für Kohlenforschung, Germany
- 2009 – 2011: Post-Doc Fellow, University of California Berkeley (Prof. Peidong Yang)
- 2005 – 2008: Ph.D. Study, Max-Planck-Institut für Kohlenforschung (Prof. Ferdi Schüth)
- 2023 – ATRAE award from the Spanish Ministry of Science, Innovation and Universities
- 2020 – Forcheurs Jean-Marie Lehn Prize 2020
- 2020 – DECHEMA Prize 2019
- 2019 – Volkswagen Foundation Award for Funding Initiative “Life? – A Fresh Scientific Approach to the Basic Principles of Life”
- 2016 – Jochen-Block-Prize of the German Catalysis Society e.V. (GeCatS)
- 2010 – DFG Research Fellowship
- Song, Y.; Tüysüz, H.* CO2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts, Acc. Chem. Res. 2024, 57, 2038. https://doi.org/10.1021/acs.accounts.4c00151
- Lee, J.; Kumar, A.; Tüysüz, H.* Solar-light-driven photocatalytic oxidative coupling of phenol derivatives over bismuth-based porous metal halide perovskites, Angew. Chem. Int. Ed. 2024, 63, e202404496. https://doi.org/10.1002/anie.202404496
- Onur, E.; Lee, J.; Aymerich-Armengol, R.; Lim, J.; Dai, Y.; Tüysüz, H.; Scheu C.; Weidenthaler, C.* Exploring the effects of the photochromic response and crystallization on the local structure of non-crystalline niobium oxide, ACS App. Mater. Interfaces 2024, 16, 25136. https://doi.org/10.1021/acsami.4c04038
- Wang, Y.; Kumar, A.; Budiyanto, E.; Cheraparambil, H.; Weidenthaler, C.; Tüysüz, H*. Boron-incorporated cobalt-nickel oxide nanosheets for electrochemical oxygen evolution reaction, ACS Appl. Energy Mater. 2024, 7, 3145. https://doi.org/10.1021/acsaem.3c03136
- Belthle, K.; Martin, F. W.; Tüysüz, H.* Synergistic effects of silica-supported Iron-Cobalt catalysts for CO2 reduction to prebiotic organics, ChemCatChem 2024, 16, e202301218. https://doi.org/10.1002/cctc.202301218
- Brabender, M.*; Henriques Pereira, D. P.; Sucharitakul, J.; Kleinermanns, K.; Tüysüz, H.; Buckel, W.; Preiner, M. Martin, F. W. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation, PNAS 2024, 121, e2318969121. https://doi.org/10.1073/pnas.2318969121
- Kaur, H.; Werner, E.; Song, Y.; Yi, J.; Kazöne, W.; Martin, F. W.; Tüysüz, H.; Moran, J.* A prebiotic Krebs cycle generates amino acids with H2 and NH3 over nickel, Chem 2024, 10, 1528. https://doi.org/10.1016/j.chempr.2024.02.001
- Miyazaki, R*.; Belthle, K.; Tüysüz, H.; Foppa, L*.; Scheffler, M.; Materials genes of CO2 hydrogenation on supported cobalt catalysts: an artificial intelligence approach integrating theoretical and experimental data, J. Am. Chem. Soc. 2024, 146, 543. https://doi.org/10.1021/jacs.3c12984
- Tüysüz, H*. Alkaline water electrolysis for green hydrogen production, Acc. Chem. Res. 2024, 57, 558. https://doi.org/10.1021/acs.accounts.3c00709
- Cheraparambil, H.; Vega-Paredes, M.; Wang, Y.; Tüysüz, H.; Scheu, C.; Weidenthaler C.* Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO3, J. Mater. Chem. A 2024, 12, 5194. https://doi.org/10.1039/D3TA06733E
- Song, Y.; Beyazay, T.; Tüysüz, H.* Effect of alkali- and alkaline-earth-metal promoters on silica-supported Co-Fe alloy for autocatalytic CO2 fixation, Angew. Chem. Int. Ed. 2024, 63, e202316110. https://doi.org/10.1002/ange.202316110
- Beyazay, T.; Martin, F. W.; Tüysüz, H.* Direct synthesis of formamide from CO2 and H2O with nickel-iron nitride heterostructures under mild hydrothermal conditions, J. Am. Chem. Soc. 2023, 145, 19768 https://doi.org/10.1021/jacs.3c05412
- Beyazay, T.; Ochoa-Hernández, C.; Song, Y.; Belthle, S. K.; Martin, F. W.; Tüysüz, H*. Influence of composition of nickel-iron nanoparticles for abiotic CO2 fixation to early prebiotic organics, Angew. Chem. Int. Ed. 2023, 135, e202218189. https://doi.org/10.1002/anie.202218189
- Budiyanto, E.; Ochoa-Hernández, C.; Tüysüz, H.* Impact of alkaline treatment on mesostructured cobalt oxide for the oxygen evolution reaction, Adv. Sustainable Syst. 2023, 7, 2200499. https://doi.org/10.1002/adsu.202200499
- Wu, Z.; Tüysüz, H.; Besenbacher, F.; Dai, ;* Xiong, Y*. Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light, Nanoscale 2023, 15, 5598. https://doi.org/10.1039/D3NR00124E
- Beyazay, T.; Belthle, K.; Fares, C.; Preiner M.; Moran, J.; Martin, W*. F.; Tüysüz, H.* Stepwise ambient temperature conversion of CO2 and H2 to pyruvate and citramalate over iron and nickel nanoparticles, Nat. Commun. 2023, 14, 570. https://doi.org/10.1038/s41467-023-36088-w
- Belthle, K.; Tüysüz, H*.; Linking catalysis in biochemical and geochemical CO2 fixation at the emergence of life, ChemCatChem 2023, 15, e202201462 (invited concept article). https://doi.org/10.1002/cctc.202201462
- Falk, T.; Budiyanto, ; Dreyer, M.; Büker, J.; Weidenthaler, C.; Behrens, M.; Tüysüz, H*.; Muhler, M.; Peng, B*. Effect of transition metal substitution on the catalytic activity of mesostructured Co3O4 in the selective oxidation of 2-propanol, ACS Appl. Nano Mater. 2022, 12, 17783. https://doi.org/10.1021/acsanm.2c03757
- Belthle, K.; Beyazay, T.; Ochoa-Hernández, C.; Miyazaki, R.; Martin, F. W.; Tüysüz, H.* Effect of silica modification (Mg, Al, Ca, Ti, and Zr) on supported cobalt catalysts for H2 dependent CO2 reduction to metabolic intermediates, J. Am. Chem. Soc. 2022, 144, 21232. https://doi.org/10.1021/jacs.2c08845
- Bowker, M.; DeBeer, S.; Dummer N. F*.; Hutchings, G. J.; Scheffler, ; Schüth, F.; Taylor, S. H.; Tüysüz, H*, Advancing critical chemical processes for a sustainable future: Challenges for industry and the Max Planck-Cardiff Centre on the fundamentals of heterogeneous catalysis (FUNCAT), Angew. Chem. Int. Ed. 2022, 134, e202209016. https://doi.org/10.1002/anie.202209016
- Yu, M.; Weidenthaler, C.; Wang, Y.; Budiyanto, E.; Şahin E. O.; Chen, M.; DeBeer, S.; Ruediger, O.; Tüysüz, H.* Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction, Angew. Chem. Int. Ed. 2022, 61, e202211543. https://doi.org/10.1002/anie.202211543
- Kumar, A.; Le, J., Kim, M. G.; Debnath, B., Liu, X.; Hwang, J.; Wang, Y.; Shao, X.; Liu, Y.; Yiu, Y.; Jadhav, A. R.; Tüysüz, H.; Lee, H.* Efficient nitrate-conversion-to-ammonia on f-block single-atom/metal-oxide heterostructure via local electron-deficiency modulation, ACS Nano 2022, 16,15297. https://doi.org/10.1021/acsnano.2c06747
- Zerebecki, S.; Schott, K.; Salamon, S.; Landers, J.; Wende, H.; Budiyanto, E.; Tüysüz, H.; Reichenberger, S:*, Barcikowski, Gradually Fe-doped Co3O4 nanoparticles in 2-propanol and water oxidation catalysis with single laser pulse resolution, J. Phys. Chem. 2022, 126, 15144. https://doi.org/10.1021/acs.jpcc.2c01753
- Dreyer, M.; Hagemann, U.; Heidelmann, M.; Budiyanto, E.; Cosanne, N.; Friedel Ortega K.; Najafishirtari, S.; Hartmann, N.; Tüysüz, H.; Malte Behrens, M.* Beneficial effects of low iron contents on cobalt-containing spinel catalysts in the gas phase 2‑propanol oxidation, ChemCatChem 2022, e202200472. https://doi.org/10.1002/cctc.202200472
- Budiyanto, E.; Tüysüz, H*. Cobalt oxide nanowires with controllable diameter and crystal structures for the oxygen evolution reaction, Eur. J. Inorg. Chem. 2022, 18, e202200065 (Invited article for EurJIC Talents, highlighted as very important paper and cover of the journal). https://doi.org/10.1002/ejic.202200065
- Klein, J.; Kampermann, L.; Korte, J.; Dreyer, M.; Budiyanto, E.; Tüysüz, H.; Friedel Ortega, K. Behrens, M.; Bacher, G*. Monitoring catalytic 2-propanol oxidation over Co3O4 nanowires via in situ photoluminescence spectroscopy, J. Phys. Chem. Lett. 2022, 13, 3217. https://doi.org/10.1021/acs.jpclett.2c00098
- Budiyanto, E.; Salamon, S.; Wang, Y.; Wende, H.; Tüysüz, H.*. Phase segregation of cobalt iron oxide nanowires towards enhanced oxygen evolution reaction activity, JACS Au 2022, 2, 697. https://doi.org/10.1021/jacsau.1c00561
- Zerebecki, S.; Salamon, S.; Yang, Y.; Yujin, Y.; Budiyanto, E.; Waffel, D.; Dreyer, M.; Saddeler, S.; Kox, T.; Kenmoe, S.; Spohr, E.; Schulz, S.; Behrens, M.; Muhler, M.; Tüysüz, H.; Campen, R.; Wende, H.; Reichenberger, S.; Barcikowski, S. Defect-engineering of CoFe2O4-nanoparticles by pulsed laser heating in water, ChemCatChem 2022, 14, e202101785. https://doi.org/10.1002/cctc.202101785
- Henriques Pereira, D.; Leethaus, J.; Beyazay, T.; Nascimento Vieira, A.; Kleinermanns, K.; Tüysüz, H.; Martin, F. W.; Preiner, M*. Specific abiotic hydride transfer by metals to the biological redox cofactor NAD+, FEBS J. 2022, 289, 3148. http://doi.org/10.1111/febs.16329
- Priamushko, T.; Budiyanto, E.; Eshraghi, N.; Weidenthaler, C.; Kahr, J.; Jahn, M.; Tüysüz, H.; Kleitz, F.* Incorporation of Cu/Ni in ordered mesoporous Co-based spinels to facilitate oxygen evolution and reduction reactions in alkaline media and aprotic Li-O2batteries, ChemSusChem 2022, 15, e202102404. https://doi.org/10.1002/cssc.202102404
- Moon, G.; Wang, Y.; Kim, S.; Budiyanto, E.; Tüysüz, H.* Preparation of practical high-performance electrodes for acidic and alkaline media water electrolysis, ChemSusChem 2022, 15, e202102114. https://doi.org/10.1002/cssc.202102114
- Yu, M., Budiyanto, E.; Tüysüz, H.* Principle of water electrolysis and recent progress of nickel, cobalt and iron-based oxides for oxygen evolution reaction, Angew. Chem. Int. Ed. 2022, 61, e202103824. https://doi.org/10.1002/anie.202103824
- Budiyanto, E.; Zerebecki, S.; Weidenthaler, C.; Kox, T; Kenmoe, S; Spohr, E; DeBeer, S.; Rüdiger, O.; Reichenberger, S.; Barcikowski, S*.; Tüysüz, H.* Impact of single-pulse, low-intensity laser post-processing on structure and activity of mesostructured cobalt oxide for oxygen evolution reaction, ACS App. Mater. Interfaces, 2021, 13, 51962. https://doi.org/10.1021/acsami.1c08034
- Dai, Y.; Lee, J.; Tüysüz, H.* Preparation and physicochemical properties of nanostructured halide perovskites, Halide Perovskites for Photonics, AIP Publishing 2021, 2-1–2-26. https://doi.org/10.1063/9780735423633_002
- Dreyer, M.; Rabe, A.; Budiyanto, E.; Friedel Ortega, K.; Najafishirtari, S.; Tüysüz, H.; Behrens, M. Dynamics of reactive oxygen species on Co-containing spinel oxides in cyclic CO oxidation, Catalysts 2021, 11, 1312. https://doi.org/10.3390/catal11111312
- Baehr, A.; Petersen, Tüysüz, H.* Large scale production of carbon supported cobalt-based functional nanoparticles for oxygen evolution reaction, ChemCatChem 2021, 13, 3824. https://doi.org/10.1002/cctc.202100594
- Öztürk, S.; Moon, G-H.; Spieß, A.; Roitsch, ; Tüysüz, H*.; Janiak, C.*, A highly-efficient oxygen evolution electrocatalyst derived from a metal-organic framework and Ketjenblack carbon material, ChemPlusChem 2021, 86, 1106. https://doi.org/10.1002/cplu.202100278
- Klement, S*.; Stegmüller, ; Yoon, S.; Felser, C.; Tüysüz, H.* Weidenkaff, A. Holistic view on materials development: Water electrolysis as a case study, Angew. Chem. Int. Ed. 2021, 60, 20094. https://doi.org/10.1002/anie.202105324
- Onur Sahin. E.; Dai, Y.; Chan, C.K.; Tüysüz, H.; Schmidt, W.; Lim, J.; Zhang, S.; Scheu, C.; Weidenthaler, C*. Monitoring the structure evolution of titanium oxide photocatalysts: from the molecular form via the amorphous state to the crystalline phase, Chem. Eur. J. 2021, 27, 11480. https://doi.org/10.1002/chem.202101117
- Wang, Y.; Dai, Y.; Tüysüz, H.* Preparation and properties of polystyrene nanopsheres incorporated Cs3Bi2Br9 halide perovskite disks, Eur. J. Inorg. Chem. 2021, 2021, 2712. https://doi.org/10.1002/ejic.202100338
- Dai, Y.; Tüysüz, H*. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation, Solar RRL 2021, 5, 2100265. https://doi.org/10.1002/solr.202100265
- Falk, F; Budiyanto, E.; Dreyer, M.; Pflieger, C.; Waffel, D.; Büker, J.; Weidenthaler. C.; Ortega, K. F.; Behrens, M.; Tüysüz, H*.; Muhler, M.; Peng, B*. Identification of active sites in the catalytic oxidation of 2-Propanol over Co1+xFe2-xO4 spinel oxides at solid/liquid and solid/gas interfaces, ChemCatChem 2021, 13, 2942. https://doi.org/10.1002/cctc.202100352
- Lee, J.; Tüysüz, H.* In-depth comparative study of cathode interfacial layer for stable inverted perovskite solar cell, ChemSusChem 2021, 14, 2393. https://doi.org/10.1002/cssc.202100585
- Şahin E. O.; Tüysüz, H.; Chan, C.; Moon, G-H.; Dai, Y.; Schmidt, W.; Lim, J.; Scheu, C.; Weidenthaler, C.* In situ total scattering experiments of nucleation and crystallisation of tantalum-based oxides: from highly dilute solutions via cluster formation to nanoparticles, Nanoscale, 2021, 13, 150. https://doi.org/10.1039/D0NR07871A
- Yu, M.; Li, G.; Fu, C.; Liu, E.; Manna, K.; Budiyanto, E.; Yang, Q.; Felser, C*, Tüysüz, H.* Tunable eg orbital occupancy in Heusler compounds for oxygen evolution reaction, Angew. Chem. Int. Ed. 2021, 60, 5800 (Selected as Hot-Paper and highlighted by ChemistryViews magazine). https://doi.org/10.1002/anie.202013610
- Yu, M.; Gun-hee Moon, G-H.; Castillo, R. G.; DeBeer, S.; Weidenthaler, C.; Tüysüz, H*. Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction, Angew. Chem. Int. Ed. 2020, 59, 16544. https://doi.org/10.1002/anie.202003801
- Dai, Y.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H*. Supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic carbon-hydrogen bond activation, Angew. Chem. Int. Ed. 2020, 59, 5788. https://doi.org/10.1002/ange.201915034.
- Preiner, M.; Igarashi, K.; Muchowska, K. B.; Yu, M.; Varma, S. J.; Kleinermanns, K.; Nobu, M. K.; Kamagata, Y.; Tüysüz, H*.; Moran, J*.; Martin, W. F*. A hydrogen dependent geochemical analogue of primordial carbon and energy metabolism, Nature Eco. Evol. 2020, 4, 434 (Highlighted in Science). https://doi.org/10.1038/s41559-020-1125-6
- Bediyanto, E.; Yu, M.; Chen, M: DeBeer, S.; Rüdiger, O*.; Tüysüz, H*.Tailoring morphology and electronic structure of cobalt iron oxide nanowires for electrochemical oxygen evolution reaction, ACS App. Energy Mater 2020, 3, 8583. https://doi.org/10.1021/acsaem.0c01201.
- Waffel, D.; Budiyanto, E.; Porske,T.; Büker, J.; Falk, T.; Fu, Q.; Stefan Schmidt, S.; Tüysüz, H.; Muhler, M.; Peng, B. Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene, Mol. Catal. 2020, 498, 111251. https://doi.org/10.1016/j.mcat.2020.111251
- Priamushko, T.; Guillet-Nicolas, Yu, M.; R.; Doyle, M.; Weidenthaler, C.; Tüysüz, H*.; Kleitz, F*. Nanocast mixed Ni-Co-Mn oxides with controlled surface and pore structure as electrochemical oxygen evolution reaction, ACS App. Energy Mater. 2020, 3, 5597. https://doi.org/10.1021/acsaem.0c00544
- Lorenz, J.; Yu, M.; Tüysüz, H.; Harms, C.; Dyck, A.; Wittstock, G. Coulometric titration of active sites at mesostructured cobalt oxide spinel by surface interrogation mode of scanning electrochemical microscopy, J. Chem. Phys, 2020, 124, 7737. https://doi.org/10.1021/acs.jpcc.9b11114
- Yu, M.; Waag, ; Chan, C.; Weidenthaler, C.; Barcikowski S.; Tüysüz, H*. Laser fragmentation induced cobalt oxide nanoparticles for electrochemical oxygen evolution reaction, ChemSusChem 2020, 13, 520. http://doi.org/10.1002/cssc.201903186
- Baehr, A.; Diedenhoven, J.; Tüysüz, H.* Cl2 adsorption and desorption over ordered mesoporous carbon materials as an indicator for catalytic phosgene formation, Chem. Ing. Tech. 2020, 92, 1508 (invited article for Carbon2Chem special issue). http://doi.org/10.1002/cite.202000040
- Yu, ; Solveig Belthle, K.; Tüysüz, C.; Tüysüz, H*. Selective acid leaching: a simple way to engineer cobalt oxide nanostructure for electrochemical oxygen evolution reaction, J. Mater. Chem. A 2019, 7, 23130. https://doi.org/10.1039/C9TA07835E
- Li, G.; Xu, Q.; Shi, W.; Fu, C,: Jiao, L.; Cheon, Y.; Kamminga, E. M.; Yu, M.; Tüysüz, H; Kumar, N.; Saha, R.; Srivastava, K. A.; Wirth, S.; Auffermann, G.; Gooth, J.; Parkin, S.; Sun, Y.; Liu, E.; Felser, C*. Surface states and spin polarization in topological semimetal Co3Sn2S2 bulk single crystal for water oxidation, Science Advances, 2019, 5, eaaw9867. https://www.science.org/doi/10.1126/sciadv.aaw9867
- Moon, G-H.; Yu, M.; Chan, C. K.; Tüysüz, H*. In-situ formation of highly electroactive species directed from homogeneous cobalt precursors for oxygen evolution reaction, Angew. Chem. Int. Ed. 2019, 131, 3529. https://doi.org/10.1002/anie.201813052
- Bähr, A.; Moon, G.; Tüysüz, H*. Nitrogen-doped mesostructured carbon supported metallic cobalt nanoparticles for oxygen evolution reaction, ACS Appl. Energy Mater. 2019, 2, 6672. http://doi.org/10.1021/acsaem.9b01183
- Spanos, I.; Tesch, M. F.; Yu, M.; Tüysüz, H; Auer, A. A; Zhang, J.; Feng, X.; Müllen, K.; Schlögl, R.; Mechler, K. A*. A facile protocol for alkaline electrolyte purification and its influence on nickel cobalt oxide catalyst for oxygen evolution reaction, ACS Catalysis, 2019, 9, 8165. https://doi:10.1021/acscatal.9b01940
- Behnken, J.; Yu, M.; Deng, X.; Tüysüz, H; Harms, C.; Dyck, A.; Wittstock, G*. Oxygen reduction reaction activity of mesostructured cobalt-based metal oxides studied with cavity-microelectrode technique, ChemElectroChem 2019, 6, 3460. https://doi.org/10.1002/celc.201900722
- Dai, Y.; Tüysüz, H*. Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides, ChemSusChem 2019, 12, 2587. https://doi.org/10.1002/cssc.201900716
- Yu, M.;Moon, G-H.; Bill, E.; Tüysüz, H*. Optimizing Ni-Fe oxide electrocatalysts for oxygen evolution reaction by using hard templating as a toolbox, ACS Appl. Energy Mater. 2019, 2, 1199. https://doi.org/10.1021/acsaem.8b01769
- Preiner, M.; Xavier, J.; Sousa, F.; Zimorski, V.; Neubeck, A.; Lang, Q. S.; Greenwell, C.; Kleinermanns, K.; Tüysüz, H.; McCollom, T.; Holm, N.; Martin, F. W*. Serpentinization: connecting ancient metabolism, geochemistry and industrial hydrogenation, Life, 2018, 8, 41. https://doi.org/10.3390/life8040041
- Moon, G-H.; Baehr, A.; Tüysüz, H*. Structural engineering of 3D carbon materials from transition metal ion-exchanged Y zeolite templates, Chem. Mater. 2018, 30, 3779. http://doi.org/10.1021/acs.chemmater.8b00861
- Dodekatos, G.; Ternieden, J.; Schünemann, S.; Weidenthaler, C.; Tüysüz, H*. Promoting effect of solvent on Cu/CoO catalyst for selective glycerol oxidation, Catal. Sci. Tech. 2018, 8, 4891. http://doi.org/10.1039/C8CY01284A
- Baehr, A.; Moon, G-H.; Diedenhoven, J.; Kiecherer, J.; Barth, E.; Tüysüz, H*. Reactor design and kinetic study on adsorption/desorption of CO and Cl2 for industrial phosgene synthesis, Chem. Ing. Tech. 2018, 90, 1513. https://doi.org/10.1002/cite.201800016
- Chen, K.; Schünemann, S.; Song, S.; Tüysüz, H*. Structural effect on the optoelectronic properties of halide perovskites, Chem. Soc. Rev. 2018, 47, 7045. http://doi.org/10.1039/C8CS00212F
- Pougin, A.; Dodekatos, G.; Dilla, M.; Tüysüz, H*. Strunk, J*. Au@TiO2 core-shell composites for the photocatalytic reduction of CO2, Chem. Eur. J. 2018, 24, 12416. https://doi.org/10.1002/chem.201801796
- Schünemann, S.; Van Gastel, M.; Tüysüz, H*. A CsPbBr3/TiO2 composite for visible-light driven photocatalytic benzyl alcohol oxidation, ChemSusChem 2018, 11, 2057. https://doi.org/10.1002/cssc.201800679
- Schünemann, S.; Tüysüz, H*. Inverse opal structured CsPbBr3 perovskite photocatalyst, Eur. J. Inorg. Chem. 2018, 20-21, 2350 (invited article). http://doi.org/10.1002/ejic.201800078
- Dodekatos, G.; Schünemann, S.; Tüysüz, H*. Recent advances in thermo-, photo- and electro-catalytic glycerol oxidation, ACS Catalysis, 2018, 8, 6301. https://doi.org/10.1021/acscatal.8b01317
- Wang, G.; Kun, C.; Engelhardt, J.; Tüysüz, H.; Bongard, ; Weidenthaler, C.; Schmidt, W; Schüth, F*. Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis, Chem. Mater. 2018, 30, 2483. https://doi.org/10.1021/acs.chemmater.8b00456
- Xiong, Y.; Gu, D.; Deng, X.; Tüysüz, H.; Van Gastel, M.; Schüth, F.; Marlow, F*. High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution, Microporous and Mesoporous Mater. 2018, 268, 162. https://doi.org/10.1016/j.micromeso.2018.04.018
- Dodekatos, G.; Abis, L.; Freakley, S.; Tüysüz, H; Hutchings, G. J*. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers, ChemCatChem 2018, 10, 1351. https://doi.org/10.1002/cctc.201800074
- Yu, M.; Chan, K. C.; Tüysüz, H*. Coffee waste templating of tetrahedral and octahedral cation substituted cobalt oxides for oxygen evolution reaction, ChemSusChem 2018, 11, 605. https://doi.org/10.1002/cssc.201701877
- Chen, K.; Deng, X.; Dodekatos, G.; Tüysüz, H*. Photocatalytic polymerization of 3, 4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots, J. Am. Chem. Soc., 2017, 139, 12267. https://doi.org/10.1021/jacs.7b06413
- Schünemann, S.; Schüth, F.; Tüysüz, H*. Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts, Catal. Sci. Tech., 2017, 7, 5614. https://doi.org/10.1039/C7CY01451A
- Deng, X.; Rin, R.; Tseng, J-C.; Weidenthaler, C.; Apfel, U-F.; Tüysüz, H*. Monodispersed mesoporous silica spheres supported Co3O4 as robust catalyst for oxygen evolution reaction, ChemCatChem 2017, 9, 4238. https://doi.org/10.1002/cctc.201701001
- Schünemann, S.; Brittman, S.; Chen, K.; Garnett, E.; Tüysüz, H*. Halide perovskite 3D photonic crystals for distributed feedback lasers, ACS Photonics, 2017, 4, 2522. https://doi.org/10.1021/acsphotonics.7b00780
- Deng, X.; Öztürk, S.; Weidenthaler, Tüysüz, H*. Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction, ACS. App. Mater. Interfaces. 2017, 9, 21225. https://doi.org/10.1021/acsami.7b02571
- Zywitzki, D.; Jing, H.; Tüysüz, H*.; Chan, K. C*. High surface area, amorphous titania with reactive Ti3+ through photo-assisted synthesis method for photocatalytic H2 generation, J. Mater. Chem. A, 2017, 5, 10957. https://doi.org/10.1039/C7TA01614J
- Chen, K.; Schünemann, S.; Tüysüz, H*. Preparation of water-proof hybrid organometal halide perovskite photonic crystal beads, Angew. Chem. Int. Ed. 2017, 129, 6648. https://doi.org/10.1002/ange.201702556
- Spanos, I.; Auer.; A. A.; Neugebauer, S.; Deng , X.; Tüysüz, H.; Schlögl, R*. Standardized benchmarking of water splitting catalysts in a combined electrochemical flow cell/ICP-OES setup, ACS Catalysis, 2017, 7, 3768. https://doi.org/10.1021/acscatal.7b00632
- Dodekatos, G.; Tüysüz, H*. Effect of post-treatment on structure and catalytic activity of CuCo-based materials for glycerol oxidation, ChemCatChem 2017, 9, 610. https://doi.org/10.1002/cctc.201601219
- Deng, X.; Chen, K.; Tüysüz, H*. A Protocol for the nanocasting method: Preparation of ordered mesoporous metal oxides, Chem. Mater. 2017, 29, 40. https://doi.org/10.1021/acs.chemmater.6b02645
- Deng, X.; Chan, C.; Tüysüz, H*. Spent tea leaf templating of cobalt-based mixed oxide nanocrystals for water oxidation, ACS Appl. Mater. Interfaces, 2016, 8, 32488. https://doi.org/10.1021/acsami.6b12005
- Prieto, G.; Tüysüz, H.; Knossalla, J.; Duyckaerts, N.: Wang, G; Schüth, F*. Hollow nano- and micro-structures as catalysts, Chem. Review, 2016, 116, 14056. https://doi.org/10.1021/acs.chemrev.6b00374
- Schünemann, S.; Chen, K.; Brittman, S.; Garnett, E.; Tüysüz, H*. Preparation of organometal halide perovskite photonic crystal films for potential optoelectronic applications, ACS App. Mater. Interfaces, 2016, 8, 25489. https://doi.org/10.1021/acsami.6b09227
- Dodekatos, G.; Tüysüz, H*. Au-TiO2 nanostructure for visible light driven glycerol oxidation, Catal. Sci. Tech. 2016, 6, 7307. https://doi.org/10.1039/C6CY01192F
- Chen, K.; Deng, X.; Goddard, R.; Tüysüz, H*. Pseudomorphic transformation of organometal halide perovskite using the gaseous hydrogen halide reaction, Chem. Mater. 2016, 28, 5530. https://doi.org/10.1021/acs.chemmater.6b02233
- Grewe, T.; Tüysüz, H*. Activated carbon templated crystalline tantalates for photocatalytic hydrogen production, ChemNanoMat 2016, 2, 273. https://doi.org/10.1002/cnma.201600033
- Wang, G.; Deng, X.; Gu, D.; Chen, K.; Tüysüz, H.; Spliethoff, B.; Bongard H. J.; Weidenthaler, C.; Schmidt, W; Schüth, F*. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of α, β-unsaturated aldehydes, Angew. Chem. Int. Ed. 2016, 128, 11267. https://doi.org/10.1002/ange.201604673
- Bharathi, K.; Puring, K.; Sinev, I.; Piontek, S.; Khavryuchenko, O.; Dürholt, J. P.; Schmid, R.; Tüysüz, H; Muhler, M.; Schuhmann, W.; Apfel, U. P*. Pentlandite rocks as sustainable and storable efficient electrocatalysts for hydrogen generation, Nat. Commun. 2016, 7, 12269. http://www.nature.com/articles/ncomms12269.
- Deng, X.; Bongard, H.; Chan, C.; Tüysüz, H*. Dual templated cobalt oxide for photochemical water oxidation, ChemSusChem, 2016, 9, 409. https://doi.org/10.1002/cssc.201500872
- Grewe, T.; Tüysüz, H*. Alkali metals incorporated ordered mesoporous tantalum oxide with enhanced photocatalytic activity for water splitting, J. Mater. Chem. A, 2016, 4, 3007. https://doi.org/10.1039/C5TA07086D
- Grewe, T.; Yang, T.; Tüysüz, H*.; Chan, C*. Hyperbranched potassium lanthanum titanate perovskite photocatalysts for hydrogen generation, J. Mater. Chem. A, 2016, 4, 2837. https://doi.org/10.1039/C5TA07424J
- Grewe, T.; Meggouh, M.; Tüysüz, H*. Nanocatalysts for solar water splitting and a perspective on hydrogen economy, Chem. Asian J. 2016, 11, 22. https://doi.org/10.1002/asia.201500723
- Dodekatos, G.; Schünemann, S.; Tüysüz, H*. Surface plasmon assisted solar energy conversion, Top. Curr. Chem. 2016, 371, 215. http://link.springer.com/chapter/10.1007/128_2015_642
- Chan, C.; Tüysüz, H ; Braun, A.; Ranjan,C.; La Mantia F.; Miller, B.; Zhang, L.; Crozier, P.; Haber, J.; Gregoire, J.; Park,S.; Batchellor, A.; Trotochaud, L.; Boettcher, S. Advanced and In Situ Analytical Methods for Solar Fuel Materials, Top. Curr. Chem. 2016, 371, 25. http://link.springer.com/chapter/10.1007/128_2015_650
- Chen, K.; Tüysüz, H*. Morphology-controlled synthesis of organometal halide perovskite inverse opals, Angew. Chem. Int. Ed. 2015, 54, 13806. https://doi.org/10.1002/anie.201506367
- Schünemann, S.; Dodekatos, G.; Tüysüz, H*. Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation, Chem. Mater. 2015, 27, 7743. https://doi.org/10.1021/acs.chemmater.5b03520
- Grewe, T.; Tüysüz, H*. Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting, ACS. App. Mater. Interfaces, 2015, 7, 23153. https://doi.org/10.1021/acsami.5b06965
- Deng, X.; Dodekatos, G.; Pupovac, K.; Weidenthaler, C.; Schmidt, W.; Schüth, F.; Tüysüz, H*. Pseudomorphic generation of supported catalysts for glycerol oxidation, ChemCatChem 2015, 7, 3832. https://doi.org/10.1002/cctc.201500703
- Auer, A. A., Antonietti, M.; Antonyshyn, I.;Böhm, K-H.; Brüller, S.; Cap, S.; Cherevko, S.; Davis, R. J.; Deng, X.; Fellinger, T.; Freakley, S.; Grin, Y.; Gunnoe, B.T; Haj-Hariri, H.; Hutchings, G.; Liang, H.; Mayrhofer, K. J. J.; Müllen, K.; Neese, F.; Papakonstantinou, G.; Ranjan, C.; Sankar, M.; Schlögl, R.; Schüth, F.; Shalom, M.; Spanos, I.; Stratmann, M.; Sundmacher, K.; Tüysüz, H ; Vidakovic-Koch, T.; Yi, Y.; Zangari, G. MAXNET Energy – focusing research in chemical energy conversion on the electrocatalytic oxygen evolution, Green 2015, 5, 7. https://doi.org/10.1515/green-2015-0021
- Grewe, T.; Tüysüz, H*. Designing Photocatalysts for Hydrogen Evolution – Are Complex Preparation Strategies Necessary to Produce Active Catalysts?, ChemSusChem 2015, 8, 3084 https://doi.org/10.1002/cssc.201500774
- Tüysüz, H.; Schüth, F.; Zhi, L. J.; Müllen, K.; Comotti, M*. Ammonia decomposition over iron phthalocyanine- based materials. ChemCatChem 2015, 7, 1453. https://doi.org/10.1002/cctc.201500024
- Deng, X.; Schmidt, W.; Tüysüz, H*. Impacts of geometry, symmetry and morphology of nanocast Co3O4 on its catalytic activity for water oxidation, Chem. Mater. 2014, 26, 6127. http://pubs.acs.org/doi/abs/10.1021/cm5023163
- Deng, X.; Tüysüz, H*. Cobalt oxide based materials as water oxidation catalysts: recent progress and challenges, ACS Catalysis, 2014, 10, 3701. https://doi.org/10.1021/cs500713d
- Grewe, T.; Deng, X.; Tüysüz, H*. Influence of Fe Doping on structure and water oxidation activity of nanocast Co3O4, Chem. Mater. 2014, 26, 3162. https://doi.org/10.1021/cm5005888
- Grewe, T.; Deng, X.; Tüysüz, H*. A study on growth of Cr2O3 in ordered mesoporous silica and its replication, Chem. Eur. J. 2014, 20, 7692. https://doi.org/10.1002/chem.201402301
- Grewe T; Meier, K.; Tüysüz, H*. Photocatalytic hydrogen production over various sodium tantalates, Catal. Today, 2014, 225, 142. https://doi.org/10.1016/j.cattod.2013.10.092
- Piao, L.Y..; Chen, X.B; Li, Y.D.; Tüysüz, H. Recent progresses in the area of photocatalysis research, Catal. Today, 2014, 225, 1. http://www.sciencedirect.com/science/article/pii/S0920586113006615
- Parsons-Moss ; Tüysüz, H.; Wang, D.; Jones, S.; Olive, D.; Nitsche, H*. Plutonium sorption to nanocast mesoporous carbon, Radiochim. Acta, 2014, 102, 489. https://doi.org/10.1515/ract-2014-2138
- Tüysüz, H*.; Chan, C*. Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting, Nano Energy, 2013, 2, 116. https://doi.org/10.1016/j.nanoen.2012.08.003
- Grewe, T.; Deng, X.; Weidenthaler, C.; Schüth, F.; Tüysüz, H*. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation, Chem. Mater. 2013, 25, 4926. https://doi.org/10.1021/cm403153u
- Tüysüz, H.; Salabaş, E. L.; Bill, E.; Bongard, H.; Spliethoff, B.; Lehmann, C. W. ; Schüth, F*. Synthesis of hard magnetic Co3O4/CoFe2O4 mesoporous nanocomposite, Chem. Mater. 2012, 24, 2493. https://doi.org/10.1021/cm3005166
- Tüysüz, H.; Schüth, F*. Ordered mesoporous materials as catalysts, Adv. Catalysis. 2012, 55, 127. https://doi.org/10.1016/B978-0-12-385516-9.00002-8
- Tüysüz, H.; Hwang, Y.; Khan, S. B.; Asiri, A. M.; Yang, P*. Mesoporous Co3O4 as electrocatalysts for water oxidation, Nano Res. 2013, 6, 47. https://doi.org/10.1007/s12274-012-0280-8
- Tüysüz, H.; Weidenthaler, C.; Grewe, T..; Salabaş, E. L.; Benitez R. M. J; Schüth, F*. A crystal structure analysis and magnetic investigation on ordered mesoporous Cr2O3, Inorg. Chem., 2012, 51, 11745. https://doi.org/10.1021/ic301671a
- Tüysüz, H.; Weidenthaler, C.; Schüth, F*. A strategy for the synthesis of mesostructured metal oxides with lower oxidation states, Chem. Eur. J. 2012, 18, 5080. https://doi.org/10.1002/chem.201103650
- Deng, Y.; Tüysüz, H.; Henzie, J.; Yang, P*. Templated synthesis of shape controlled ordered TiO2 cage structure, Small, 2011, 7, 2037. https://doi.org/10.1002/smll.201100579
- Benitez R. M. J.; Petracic, O,; Tüysüz, H.; Schüth, F.; Zabel, H*. Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves, Phys. Rev. B. 2011, 83,134424. https://doi.org/10.1103/PhysRevB.83.134424
- Liu, Y.: Tüysüz, H.; Jia, C-J.; Schwickardi, M.; Rinaldi, R.; Lu, A-H.; Schmidt, W.; Schüth, F*. From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer, Chem. Commun. 2010, 1238. https://doi.org/10.1039/B921648K
- Benitez, J.; Petracic, O.; Tüysüz, H.; Schüth, F.; Zabel, H*. Decoupling of magnetic core and shell contributions in antiferromagnetic Co3O4 nanostructures, Benitez EPL 2009, 88, 27004. https://iopscience.iop.org/article/10.1209/0295-5075/88/27004
- Tüysüz, H.; Galilea, J. L.; Schüth, F*. Highly diluted copper in a. silica matrix as active catalysts for propylene oxidation to acrolein, Catal. Letters, 2009, 131, 49. https://doi.org/10.1007/s10562-009-9909-y
- Lu, A.H.; H.; Tüysüz, H.; Schüth, F*. Synthesis of ordered mesoporous carbon containing highly dispersed copper–sulphur compounds in the carbon framework via a nanocasting route, Microporous and Mesoporous Mater. 2008, 111, 117. https://doi.org/10.1016/j.micromeso.2007.07.017
- Benitez R. M. J.; Petracic, ; Salabas, E. L.; Radu, F.; Tüysüz, H.; Schüth, F.; Zabel, H*. Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires, Phys. Rev. Lett. 2008, 101, 097206. https://doi.org/10.1103/PhysRevLett.101.097206
- Tüysüz, H.; Comotti, M.; Schüth, F*. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation, Chem. Commun. 2008, 4022. https://doi.org/10.1039/B808815B
- Tüysüz, H.; Liu, Y.; Weidenthaler, C.; Schüth, F., Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol, J. Am. Chem. Soc. 2008, 130, 14108. https://doi.org/10.1021/ja806202v
- Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F*. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15 and KIT-6) and nanocast metal oxides by High Resolution Scanning Electron Microscopy, J. Am. Chem. Soc. 2008, 130, 11510. https://doi.org/10.1021/ja803362s.
- Tüysüz, H.; Salabas, E. L.; Weidenthaler, C.; Schüth, F*. Synthesis and magnetic investigation of ordered mesoporous 2-line ferrihydrite, J. Am. Chem. Soc. 2008, 130, 280. https://doi.org/10.1021/ja075528j
1. Post-doc Researcher Position in Photocatalysis:
The project is about the development of halide perovskite-based materials and their investigation as photocatalysts for solar energy conversion to chemical energy. The focus of the project will be the design and in-depth characterization of new halide perovskite compositions and the investigation of their photocatalytic functionalities for redox model reactions and polymer recycling.
To apply, see: https://jobs.materials.imdea.org/offer/view?id=41570
2. Ph.D. Position in Photocatalysis:
The project is about the development of halide perovskite-based materials and their investigation as photocatalysts for solar energy conversion to chemical energy. The focus of the project will be the design and in-depth characterization of new halide perovskite compositions and exploring their photocatalytic potentials for redox model reactions and polymer recycling.
To apply, see: https://jobs.materials.imdea.org/offer/view?id=41565