Harun Tüysüz

Catalysis and Energy Materials

Dr. Harun Tüysüz received his Ph.D. in Chemistry from the Max-Planck-Institut für Kohlenforschung in Germany in 2008 and completed his post-doctoral research at the University of California, Berkeley. In 2012, he established the Heterogeneous Catalysis and Sustainable Energy Research Group at the Max-Planck-Institut für Kohlenforschung. He obtained his Habilitation from the Ruhr University Bochum in 2016. He was awarded a competitive ATRAE grant from the Spanish Ministry of Science, Innovation and Universities in 2023, listed as the top candidate, and joined IMDEA Materials as a distinguished researcher in September 2024. He has co-authored more than 130 peer-reviewed articles in high-ranking journals with about 9000 citations. He co-edited the book titled “Solar Energy for Fuels”. He is also a member of the International Advisory Board of the journals Angewandte Chemie and ChemSusChem. His research achievements have been recognized with several awards, including the Jochen-Block-Prize in 2016, the DECHEMA Prize in 2019, and the Forcheurs Jean-Marie Lehn Prize in 2020.

harun.tuysuz@imdea.org

Group Website

Twitter

Linkedin

Google Scholar

Dr. Tüysüz’s research focuses on designing and developing functional halide perovskite structures for solar energy conversion, as well as tailoring nanoscale materials for catalytic transformations such as water electrolysis for green hydrogen generation, thermocatalytic CO2 conversion, and catalytic plastic recycling. The motivation behind the research line is to advance understanding of the structure-activity relationships in the field of heterogeneous catalysis and materials science. One of our main strategies involves developing sustainable synthetic and catalytic processes by precisely controlling the key physicochemical properties of advanced energy materials at the atomic and nanoscale, using both top-down and bottom-up approaches.

10 Selected Recent Publications:  

  1. Acc. Chem. Res. 2024, 57, 558, https://doi.org/10.1021/acs.accounts.3c00709
  2. Angew. Chem. Int. Ed. 2024, 63, e202404496, https://doi.org/10.1002/anie.202404496
  3. Angew. Chem. Int. Ed. 2024, 63, e202316110, https://doi.org/10.1002/ange.202316110
  4. Nature Commun. 2023, 14, 570, https://doi.org/10.1038/s41467-023-36088-w
  5. J. Am. Chem. Soc. 2023, 145, 19768, https://doi.org/10.1021/jacs.3c05412
  6. Angew. Chem. Int. Ed. 2023, 135, e202218189, https://doi.org/10.1002/anie.202218189
  7. J. Am. Chem. Soc. 2022, 144, 21232, https://doi.org/10.1021/jacs.2c08845
  8. Angew. Chem. Int. Ed. 2022, 61, e202211543, https://doi.org/10.1002/anie.202211543
  9. Angew. Chem. Int. Ed. 2020, 59, 16544, https://doi.org/10.1002/anie.202003801
  10. Angew. Chem. Int. Ed. 2020, 59, 5788, https://doi.org/10.1002/ange.201915034
  • 2024 – Ongoing: Head of Catalysis and Energy Materials Group at  IMDEA Materials Institute, Spain
  • 2020 – 2024: Max Planck Research Group Leader at Max-Planck-Institut für Kohenforschung, Germany
  • 2016: Habilitation at the Ruhr-University Bochum, Germany
  • 2012 – 2019: Group Leader at the Max-Planck-Institut für Kohlenforschung, Germany
  • 2009 – 2011: Post-Doc Fellow, University of California Berkeley (Prof. Peidong Yang)
  • 2005 – 2008: Ph.D. Study, Max-Planck-Institut für Kohlenforschung (Prof. Ferdi Schüth)
  • 2023 – ATRAE award from the Spanish Ministry of Science, Innovation and Universities
  • 2020 – Forcheurs Jean-Marie Lehn Prize 2020
  • 2020 – DECHEMA Prize 2019
  • 2019 – Volkswagen Foundation Award for Funding Initiative “Life? – A Fresh Scientific Approach to the Basic Principles of Life”
  • 2016 – Jochen-Block-Prize of the German Catalysis Society e.V. (GeCatS)
  • 2010 – DFG Research Fellowship
  1. Song, Y.; Tüysüz, H.* CO2 Fixation to Prebiotic Intermediates over Heterogeneous Catalysts, Acc. Chem. Res. 2024, 57, 2038. https://doi.org/10.1021/acs.accounts.4c00151
  2. Lee, J.; Kumar, A.; Tüysüz, H.* Solar-light-driven photocatalytic oxidative coupling of phenol derivatives over bismuth-based porous metal halide perovskites, Angew. Chem. Int. Ed. 2024, 63, e202404496. https://doi.org/10.1002/anie.202404496
  3. Onur, E.; Lee, J.; Aymerich-Armengol, R.; Lim, J.; Dai, Y.; Tüysüz, H.; Scheu C.; Weidenthaler, C.* Exploring the effects of the photochromic response and crystallization on the local structure of non-crystalline niobium oxide, ACS App. Mater. Interfaces 2024, 16, 25136. https://doi.org/10.1021/acsami.4c04038
  4. Wang, Y.; Kumar, A.; Budiyanto, E.; Cheraparambil, H.; Weidenthaler, C.; Tüysüz, H*. Boron-incorporated cobalt-nickel oxide nanosheets for electrochemical oxygen evolution reaction, ACS Appl. Energy Mater. 2024, 7, 3145. https://doi.org/10.1021/acsaem.3c03136
  5. Belthle, K.; Martin, F. W.; Tüysüz, H.* Synergistic effects of silica-supported Iron-Cobalt catalysts for CO2 reduction to prebiotic organics, ChemCatChem 2024, 16, e202301218. https://doi.org/10.1002/cctc.202301218
  6. Brabender, M.*; Henriques Pereira, D. P.; Sucharitakul, J.; Kleinermanns, K.; Tüysüz, H.; Buckel, W.; Preiner, M. Martin, F. W. Ferredoxin reduction by hydrogen with iron functions as an evolutionary precursor of flavin-based electron bifurcation, PNAS 2024, 121, e2318969121. https://doi.org/10.1073/pnas.2318969121
  7. Kaur, H.; Werner, E.; Song, Y.; Yi, J.; Kazöne, W.; Martin, F. W.; Tüysüz, H.; Moran, J.* A prebiotic Krebs cycle generates amino acids with H2 and NH3 over nickel, Chem 2024, 10, 1528. https://doi.org/10.1016/j.chempr.2024.02.001
  8. Miyazaki, R*.; Belthle, K.; Tüysüz, H.; Foppa, L*.; Scheffler, M.; Materials genes of CO2 hydrogenation on supported cobalt catalysts: an artificial intelligence approach integrating theoretical and experimental data, J. Am. Chem. Soc. 2024, 146, 543. https://doi.org/10.1021/jacs.3c12984
  9. Tüysüz, H*. Alkaline water electrolysis for green hydrogen production, Acc. Chem. Res. 2024, 57, 558. https://doi.org/10.1021/acs.accounts.3c00709
  10. Cheraparambil, H.; Vega-Paredes, M.; Wang, Y.; Tüysüz, H.; Scheu, C.; Weidenthaler C.* Deciphering the role of Fe impurities in the electrolyte boosting the OER activity of LaNiO3, J. Mater. Chem. A 2024, 12, 5194. https://doi.org/10.1039/D3TA06733E
  11. Song, Y.; Beyazay, T.; Tüysüz, H.* Effect of alkali- and alkaline-earth-metal promoters on silica-supported Co-Fe alloy for autocatalytic CO2 fixation, Angew. Chem. Int. Ed. 2024, 63, e202316110. https://doi.org/10.1002/ange.202316110
  12. Beyazay, T.; Martin, F. W.; Tüysüz, H.* Direct synthesis of formamide from CO2 and H2O with nickel-iron nitride heterostructures under mild hydrothermal conditions, J. Am. Chem. Soc. 2023, 145, 19768 https://doi.org/10.1021/jacs.3c05412
  13. Beyazay, T.; Ochoa-Hernández, C.; Song, Y.; Belthle, S. K.; Martin, F. W.; Tüysüz, H*. Influence of composition of nickel-iron nanoparticles for abiotic CO2 fixation to early prebiotic organics, Angew. Chem. Int. Ed. 2023, 135, e202218189. https://doi.org/10.1002/anie.202218189
  14. Budiyanto, E.; Ochoa-Hernández, C.; Tüysüz, H.* Impact of alkaline treatment on mesostructured cobalt oxide for the oxygen evolution reaction, Adv. Sustainable Syst. 2023, 7, 2200499. https://doi.org/10.1002/adsu.202200499
  15. Wu, Z.; Tüysüz, H.; Besenbacher, F.; Dai, ;* Xiong, Y*. Recent developments in lead-free bismuth-based halide perovskite nanomaterials for heterogeneous photocatalysis under visible light, Nanoscale 2023, 15, 5598. https://doi.org/10.1039/D3NR00124E
  16. Beyazay, T.; Belthle, K.; Fares, C.; Preiner M.; Moran, J.; Martin, W*. F.; Tüysüz, H.* Stepwise ambient temperature conversion of CO2 and H2 to pyruvate and citramalate over iron and nickel nanoparticles, Nat. Commun. 2023, 14, 570. https://doi.org/10.1038/s41467-023-36088-w
  17. Belthle, K.; Tüysüz, H*.; Linking catalysis in biochemical and geochemical CO2 fixation at the emergence of life, ChemCatChem 2023, 15, e202201462 (invited concept article). https://doi.org/10.1002/cctc.202201462
  18. Falk, T.; Budiyanto, ; Dreyer, M.; Büker, J.; Weidenthaler, C.; Behrens, M.; Tüysüz, H*.; Muhler, M.; Peng, B*. Effect of transition metal substitution on the catalytic activity of mesostructured Co3O4 in the selective oxidation of 2-propanol, ACS Appl. Nano Mater. 2022, 12, 17783. https://doi.org/10.1021/acsanm.2c03757
  19. Belthle, K.; Beyazay, T.; Ochoa-Hernández, C.; Miyazaki, R.; Martin, F. W.; Tüysüz, H.* Effect of silica modification (Mg, Al, Ca, Ti, and Zr) on supported cobalt catalysts for H2 dependent CO2 reduction to metabolic intermediates, J. Am. Chem. Soc. 2022, 144, 21232. https://doi.org/10.1021/jacs.2c08845
  20. Bowker, M.; DeBeer, S.; Dummer N. F*.; Hutchings, G. J.; Scheffler, ; Schüth, F.; Taylor, S. H.; Tüysüz, H*, Advancing critical chemical processes for a sustainable future: Challenges for industry and the Max Planck-Cardiff Centre on the fundamentals of heterogeneous catalysis (FUNCAT), Angew. Chem. Int. Ed. 2022, 134, e202209016. https://doi.org/10.1002/anie.202209016
  21. Yu, M.; Weidenthaler, C.; Wang, Y.; Budiyanto, E.; Şahin E. O.; Chen, M.; DeBeer, S.; Ruediger, O.; Tüysüz, H.* Surface boron modulation on cobalt oxide nanocrystals for electrochemical oxygen evolution reaction, Angew. Chem. Int. Ed. 2022, 61, e202211543. https://doi.org/10.1002/anie.202211543
  22. Kumar, A.; Le, J., Kim, M. G.; Debnath, B., Liu, X.; Hwang, J.; Wang, Y.; Shao, X.; Liu, Y.; Yiu, Y.; Jadhav, A. R.; Tüysüz, H.; Lee, H.* Efficient nitrate-conversion-to-ammonia on f-block single-atom/metal-oxide heterostructure via local electron-deficiency modulation, ACS Nano 2022, 16,15297. https://doi.org/10.1021/acsnano.2c06747
  23. Zerebecki, S.; Schott, K.; Salamon, S.; Landers, J.; Wende, H.; Budiyanto, E.; Tüysüz, H.; Reichenberger, S:*, Barcikowski, Gradually Fe-doped Co3O4 nanoparticles in 2-propanol and water oxidation catalysis with single laser pulse resolution, J. Phys. Chem. 2022, 126, 15144. https://doi.org/10.1021/acs.jpcc.2c01753
  24. Dreyer, M.; Hagemann, U.; Heidelmann, M.; Budiyanto, E.; Cosanne, N.; Friedel Ortega K.; Najafishirtari, S.; Hartmann, N.; Tüysüz, H.; Malte Behrens, M.* Beneficial effects of low iron contents on cobalt-containing spinel catalysts in the gas phase 2‑propanol oxidation, ChemCatChem 2022, e202200472. https://doi.org/10.1002/cctc.202200472
  25. Budiyanto, E.; Tüysüz, H*. Cobalt oxide nanowires with controllable diameter and crystal structures for the oxygen evolution reaction, Eur. J. Inorg. Chem. 2022, 18, e202200065 (Invited article for EurJIC Talents, highlighted as very important paper and cover of the journal). https://doi.org/10.1002/ejic.202200065
  26. Klein, J.; Kampermann, L.; Korte, J.; Dreyer, M.; Budiyanto, E.; Tüysüz, H.; Friedel Ortega, K. Behrens, M.; Bacher, G*. Monitoring catalytic 2-propanol oxidation over Co3O4 nanowires via in situ photoluminescence spectroscopy, J. Phys. Chem. Lett. 2022, 13, 3217. https://doi.org/10.1021/acs.jpclett.2c00098
  27. Budiyanto, E.; Salamon, S.; Wang, Y.; Wende, H.; Tüysüz, H.*. Phase segregation of cobalt iron oxide nanowires towards enhanced oxygen evolution reaction activity, JACS Au 2022, 2, 697. https://doi.org/10.1021/jacsau.1c00561
  28. Zerebecki, S.; Salamon, S.; Yang, Y.; Yujin, Y.; Budiyanto, E.; Waffel, D.; Dreyer, M.; Saddeler, S.; Kox, T.; Kenmoe, S.; Spohr, E.; Schulz, S.; Behrens, M.; Muhler, M.; Tüysüz, H.; Campen, R.; Wende, H.; Reichenberger, S.; Barcikowski, S. Defect-engineering of CoFe2O4-nanoparticles by pulsed laser heating in water, ChemCatChem 2022, 14, e202101785. https://doi.org/10.1002/cctc.202101785
  29. Henriques Pereira, D.; Leethaus, J.; Beyazay, T.; Nascimento Vieira, A.; Kleinermanns, K.; Tüysüz, H.; Martin, F. W.; Preiner, M*. Specific abiotic hydride transfer by metals to the biological redox cofactor NAD+, FEBS J. 2022, 289, 3148. http://doi.org/10.1111/febs.16329
  30. Priamushko, T.; Budiyanto, E.; Eshraghi, N.; Weidenthaler, C.; Kahr, J.; Jahn, M.; Tüysüz, H.; Kleitz, F.* Incorporation of Cu/Ni in ordered mesoporous Co-based spinels to facilitate oxygen evolution and reduction reactions in alkaline media and aprotic Li-O2batteries, ChemSusChem 2022, 15, e202102404. https://doi.org/10.1002/cssc.202102404
  31. Moon, G.; Wang, Y.; Kim, S.; Budiyanto, E.; Tüysüz, H.* Preparation of practical high-performance electrodes for acidic and alkaline media water electrolysis, ChemSusChem 2022, 15, e202102114. https://doi.org/10.1002/cssc.202102114
  32. Yu, M., Budiyanto, E.; Tüysüz, H.* Principle of water electrolysis and recent progress of nickel, cobalt and iron-based oxides for oxygen evolution reaction, Angew. Chem. Int. Ed. 2022, 61, e202103824. https://doi.org/10.1002/anie.202103824
  33. Budiyanto, E.; Zerebecki, S.; Weidenthaler, C.; Kox, T; Kenmoe, S; Spohr, E; DeBeer, S.; Rüdiger, O.; Reichenberger, S.; Barcikowski, S*.; Tüysüz, H.* Impact of single-pulse, low-intensity laser post-processing on structure and activity of mesostructured cobalt oxide for oxygen evolution reaction, ACS App. Mater. Interfaces, 2021, 13, 51962. https://doi.org/10.1021/acsami.1c08034
  34. Dai, Y.; Lee, J.; Tüysüz, H.* Preparation and physicochemical properties of nanostructured halide perovskites, Halide Perovskites for Photonics, AIP Publishing 2021, 2-1–2-26. https://doi.org/10.1063/9780735423633_002
  35. Dreyer, M.; Rabe, A.; Budiyanto, E.; Friedel Ortega, K.; Najafishirtari, S.; Tüysüz, H.; Behrens, M. Dynamics of reactive oxygen species on Co-containing spinel oxides in cyclic CO oxidation, Catalysts 2021, 11, 1312. https://doi.org/10.3390/catal11111312
  36. Baehr, A.; Petersen, Tüysüz, H.* Large scale production of carbon supported cobalt-based functional nanoparticles for oxygen evolution reaction, ChemCatChem 2021, 13, 3824. https://doi.org/10.1002/cctc.202100594
  37. Öztürk, S.; Moon, G-H.; Spieß, A.; Roitsch, ; Tüysüz, H*.; Janiak, C.*, A highly-efficient oxygen evolution electrocatalyst derived from a metal-organic framework and Ketjenblack carbon material, ChemPlusChem 2021, 86, 1106. https://doi.org/10.1002/cplu.202100278
  38. Klement, S*.; Stegmüller, ; Yoon, S.; Felser, C.; Tüysüz, H.* Weidenkaff, A. Holistic view on materials development: Water electrolysis as a case study, Angew. Chem. Int. Ed. 2021, 60, 20094. https://doi.org/10.1002/anie.202105324
  39. Onur Sahin. E.; Dai, Y.; Chan, C.K.; Tüysüz, H.; Schmidt, W.; Lim, J.; Zhang, S.; Scheu, C.; Weidenthaler, C*. Monitoring the structure evolution of titanium oxide photocatalysts: from the molecular form via the amorphous state to the crystalline phase, Chem. Eur. J. 2021, 27, 11480. https://doi.org/10.1002/chem.202101117
  40. Wang, Y.; Dai, Y.; Tüysüz, H.* Preparation and properties of polystyrene nanopsheres incorporated Cs3Bi2Br9 halide perovskite disks, Eur. J. Inorg. Chem. 2021, 2021, 2712. https://doi.org/10.1002/ejic.202100338
  41. Dai, Y.; Tüysüz, H*. Rapid acidic media growth of Cs3Bi2Br9 halide perovskite platelets for photocatalytic toluene oxidation, Solar RRL 2021, 5, 2100265. https://doi.org/10.1002/solr.202100265
  42. Falk, F; Budiyanto, E.; Dreyer, M.; Pflieger, C.; Waffel, D.; Büker, J.; Weidenthaler. C.; Ortega, K. F.; Behrens, M.; Tüysüz, H*.; Muhler, M.; Peng, B*. Identification of active sites in the catalytic oxidation of 2-Propanol over Co1+xFe2-xO4 spinel oxides at solid/liquid and solid/gas interfaces, ChemCatChem 2021, 13, 2942. https://doi.org/10.1002/cctc.202100352
  43. Lee, J.; Tüysüz, H.* In-depth comparative study of cathode interfacial layer for stable inverted perovskite solar cell, ChemSusChem 2021, 14, 2393. https://doi.org/10.1002/cssc.202100585
  44. Şahin E. O.; Tüysüz, H.; Chan, C.; Moon, G-H.; Dai, Y.; Schmidt, W.; Lim, J.; Scheu, C.; Weidenthaler, C.* In situ total scattering experiments of nucleation and crystallisation of tantalum-based oxides: from highly dilute solutions via cluster formation to nanoparticles, ‎Nanoscale, 2021, 13, 150. https://doi.org/10.1039/D0NR07871A
  45. Yu, M.; Li, G.; Fu, C.; Liu, E.; Manna, K.; Budiyanto, E.; Yang, Q.; Felser, C*, Tüysüz, H.* Tunable eg orbital occupancy in Heusler compounds for oxygen evolution reaction, Angew. Chem. Int. Ed. 2021, 60, 5800 (Selected as Hot-Paper and highlighted by ChemistryViews magazine). https://doi.org/10.1002/anie.202013610
  46. Yu, M.; Gun-hee Moon, G-H.; Castillo, R. G.; DeBeer, S.; Weidenthaler, C.; Tüysüz, H*. Dual role of silver moieties coupled with ordered mesoporous cobalt oxide towards electrocatalytic oxygen evolution reaction, Angew. Chem. Int. Ed. 2020, 59, 16544. https://doi.org/10.1002/anie.202003801
  47. Dai, Y.; Poidevin, C.; Ochoa-Hernández, C.; Auer, A. A.; Tüysüz, H*. Supported bismuth halide perovskite photocatalyst for selective aliphatic and aromatic carbon-hydrogen bond activation, Angew. Chem. Int. Ed. 2020, 59, 5788. https://doi.org/10.1002/ange.201915034.
  48. Preiner, M.; Igarashi, K.; Muchowska, K. B.; Yu, M.; Varma, S. J.; Kleinermanns, K.; Nobu, M. K.; Kamagata, Y.; Tüysüz, H*.; Moran, J*.; Martin, W. F*. A hydrogen dependent geochemical analogue of primordial carbon and energy metabolism, Nature Eco. Evol. 2020, 4, 434 (Highlighted in Science). https://doi.org/10.1038/s41559-020-1125-6
  49. Bediyanto, E.; Yu, M.; Chen, M: DeBeer, S.; Rüdiger, O*.; Tüysüz, H*.Tailoring morphology and electronic structure of cobalt iron oxide nanowires for electrochemical oxygen evolution reaction, ACS App. Energy Mater 2020, 3, 8583. https://doi.org/10.1021/acsaem.0c01201.
  50. Waffel, D.; Budiyanto, E.; Porske,T.; Büker, J.; Falk, T.; Fu, Q.; Stefan Schmidt, S.; Tüysüz, H.;  Muhler, M.;  Peng, B. Investigation of Synergistic Effects between Co and Fe in Co3-xFexO4 Spinel Catalysts for the Liquid-Phase Oxidation of Aromatic Alcohols and Styrene, Mol. Catal. 2020, 498, 111251. https://doi.org/10.1016/j.mcat.2020.111251
  51. Priamushko, T.; Guillet-Nicolas, Yu, M.; R.; Doyle, M.; Weidenthaler, C.; Tüysüz, H*.; Kleitz, F*. Nanocast mixed Ni-Co-Mn oxides with controlled surface and pore structure as electrochemical oxygen evolution reaction, ACS App. Energy Mater. 2020, 3, 5597. https://doi.org/10.1021/acsaem.0c00544
  52. Lorenz, J.; Yu, M.; Tüysüz, H.; Harms, C.; Dyck, A.; Wittstock, G. Coulometric titration of active sites at mesostructured cobalt oxide spinel by surface interrogation mode of scanning electrochemical microscopy, J. Chem. Phys, 2020, 124, 7737. https://doi.org/10.1021/acs.jpcc.9b11114
  53. Yu, M.; Waag, ; Chan, C.; Weidenthaler, C.; Barcikowski S.; Tüysüz, H*. Laser fragmentation induced cobalt oxide nanoparticles for electrochemical oxygen evolution reaction, ChemSusChem 2020, 13, 520. http://doi.org/10.1002/cssc.201903186
  54. Baehr, A.; Diedenhoven, J.; Tüysüz, H.* Cl2 adsorption and desorption over ordered mesoporous carbon materials as an indicator for catalytic phosgene formation, Chem. Ing. Tech. 2020, 92, 1508 (invited article for Carbon2Chem special issue). http://doi.org/10.1002/cite.202000040
  55. Yu, ; Solveig Belthle, K.; Tüysüz, C.; Tüysüz, H*. Selective acid leaching: a simple way to engineer cobalt oxide nanostructure for electrochemical oxygen evolution reaction, J. Mater. Chem. A 2019, 7, 23130. https://doi.org/10.1039/C9TA07835E
  56. Li, G.; Xu, Q.; Shi, W.; Fu, C,: Jiao, L.; Cheon, Y.; Kamminga, E. M.; Yu, M.; Tüysüz, H; Kumar, N.; Saha, R.; Srivastava, K. A.; Wirth, S.; Auffermann, G.; Gooth, J.; Parkin, S.; Sun, Y.; Liu, E.; Felser, C*. Surface states and spin polarization in topological semimetal Co3Sn2S2 bulk single crystal for water oxidation, Science Advances, 2019, 5, eaaw9867. https://www.science.org/doi/10.1126/sciadv.aaw9867
  57. Moon, G-H.; Yu, M.; Chan, C. K.; Tüysüz, H*. In-situ formation of highly electroactive species directed from homogeneous cobalt precursors for oxygen evolution reaction, Angew. Chem. Int. Ed. 2019, 131, 3529. https://doi.org/10.1002/anie.201813052
  58. Bähr, A.; Moon, G.; Tüysüz, H*. Nitrogen-doped mesostructured carbon supported metallic cobalt nanoparticles for oxygen evolution reaction, ACS Appl. Energy Mater. 2019, 2, 6672. http://doi.org/10.1021/acsaem.9b01183
  59. Spanos, I.; Tesch, M. F.; Yu, M.; Tüysüz, H; Auer, A. A; Zhang, J.; Feng, X.; Müllen, K.; Schlögl, R.; Mechler, K. A*. A facile protocol for alkaline electrolyte purification and its influence on nickel cobalt oxide catalyst for oxygen evolution reaction, ACS Catalysis, 2019, 9, 8165. https://doi:10.1021/acscatal.9b01940
  60. Behnken, J.; Yu, M.; Deng, X.; Tüysüz, H; Harms, C.; Dyck, A.; Wittstock, G*. Oxygen reduction reaction activity of mesostructured cobalt-based metal oxides studied with cavity-microelectrode technique, ChemElectroChem 2019, 6, 3460. https://doi.org/10.1002/celc.201900722
  61. Dai, Y.; Tüysüz, H*. Lead-free Cs3Bi2Br9 perovskite as photocatalyst for ring-opening reactions of epoxides, ChemSusChem 2019, 12, 2587. https://doi.org/10.1002/cssc.201900716
  62. Yu, M.;Moon, G-H.; Bill, E.; Tüysüz, H*. Optimizing Ni-Fe oxide electrocatalysts for oxygen evolution reaction by using hard templating as a toolbox, ACS Appl. Energy Mater. 2019, 2, 1199. https://doi.org/10.1021/acsaem.8b01769
  63. Preiner, M.; Xavier, J.; Sousa, F.; Zimorski, V.; Neubeck, A.; Lang, Q. S.; Greenwell, C.; Kleinermanns, K.; Tüysüz, H.; McCollom, T.; Holm, N.; Martin, F. W*. Serpentinization: connecting ancient metabolism, geochemistry and industrial hydrogenation, Life, 2018, 8, 41. https://doi.org/10.3390/life8040041
  64. Moon, G-H.; Baehr, A.; Tüysüz, H*. Structural engineering of 3D carbon materials from transition metal ion-exchanged Y zeolite templates, Chem. Mater. 2018, 30, 3779. http://doi.org/10.1021/acs.chemmater.8b00861
  65. Dodekatos, G.; Ternieden, J.; Schünemann, S.; Weidenthaler, C.; Tüysüz, H*. Promoting effect of solvent on Cu/CoO catalyst for selective glycerol oxidation, Catal. Sci. Tech. 2018, 8, 4891. http://doi.org/10.1039/C8CY01284A
  66. Baehr, A.; Moon, G-H.; Diedenhoven, J.; Kiecherer, J.; Barth, E.; Tüysüz, H*. Reactor design and kinetic study on adsorption/desorption of CO and Cl2 for industrial phosgene synthesis, Chem. Ing. Tech. 2018, 90, 1513. https://doi.org/10.1002/cite.201800016
  67. Chen, K.; Schünemann, S.; Song, S.; Tüysüz, H*. Structural effect on the optoelectronic properties of halide perovskites, Chem. Soc. Rev. 2018, 47, 7045. http://doi.org/10.1039/C8CS00212F
  68. Pougin, A.; Dodekatos, G.; Dilla, M.; Tüysüz, H*. Strunk, J*. Au@TiO2 core-shell composites for the photocatalytic reduction of CO2, Chem. Eur. J. 2018, 24, 12416. https://doi.org/10.1002/chem.201801796
  69. Schünemann, S.; Van Gastel, M.; Tüysüz, H*. A CsPbBr3/TiO2 composite for visible-light driven photocatalytic benzyl alcohol oxidation, ChemSusChem 2018, 11, 2057. https://doi.org/10.1002/cssc.201800679
  70. Schünemann, S.; Tüysüz, H*. Inverse opal structured CsPbBr3 perovskite photocatalyst, Eur. J. Inorg. Chem. 2018, 20-21, 2350 (invited article). http://doi.org/10.1002/ejic.201800078
  71. Dodekatos, G.; Schünemann, S.; Tüysüz, H*. Recent advances in thermo-, photo- and electro-catalytic glycerol oxidation, ACS Catalysis, 2018, 8, 6301. https://doi.org/10.1021/acscatal.8b01317
  72. Wang, G.; Kun, C.; Engelhardt, J.; Tüysüz, H.; Bongard, ; Weidenthaler, C.; Schmidt, W; Schüth, F*. Scalable one-pot synthesis of yolk-shell carbon nanospheres with yolk-supported Pd nanoparticles for size-selective catalysis, Chem. Mater. 2018, 30, 2483. https://doi.org/10.1021/acs.chemmater.8b00456
  73. Xiong, Y.; Gu, D.; Deng, X.; Tüysüz, H.; Van Gastel, M.; Schüth, F.; Marlow, F*. High surface area black TiO2 templated from ordered mesoporous carbon for solar driven hydrogen evolution, Microporous and Mesoporous Mater. 2018, 268, 162. https://doi.org/10.1016/j.micromeso.2018.04.018
  74. Dodekatos, G.; Abis, L.; Freakley, S.; Tüysüz, H; Hutchings, G. J*. Glycerol oxidation using MgO and Al2O3 supported gold and gold-palladium nanoparticles prepared in the absence of polymer stabilisers, ChemCatChem 2018, 10, 1351. https://doi.org/10.1002/cctc.201800074
  75. Yu, M.; Chan, K. C.; Tüysüz, H*. Coffee waste templating of tetrahedral and octahedral cation substituted cobalt oxides for oxygen evolution reaction, ChemSusChem 2018, 11, 605. https://doi.org/10.1002/cssc.201701877
  76. Chen, K.; Deng, X.; Dodekatos, G.; Tüysüz, H*. Photocatalytic polymerization of 3, 4-ethylenedioxythiophene over cesium lead iodide perovskite quantum dots, J. Am. Chem. Soc., 2017, 139, 12267. https://doi.org/10.1021/jacs.7b06413
  77. Schünemann, S.; Schüth, F.; Tüysüz, H*. Selective glycerol oxidation over ordered mesoporous copper aluminum oxide catalysts, Catal. Sci. Tech., 2017, 7, 5614. https://doi.org/10.1039/C7CY01451A
  78. Deng, X.; Rin, R.; Tseng, J-C.; Weidenthaler, C.; Apfel, U-F.; Tüysüz, H*. Monodispersed mesoporous silica spheres supported Co3O4 as robust catalyst for oxygen evolution reaction, ChemCatChem 2017, 9, 4238. https://doi.org/10.1002/cctc.201701001
  79. Schünemann, S.; Brittman, S.; Chen, K.; Garnett, E.; Tüysüz, H*. Halide perovskite 3D photonic crystals for distributed feedback lasers, ACS Photonics, 2017, 4, 2522. https://doi.org/10.1021/acsphotonics.7b00780
  80. Deng, X.; Öztürk, S.; Weidenthaler, Tüysüz, H*. Iron-induced activation of ordered mesoporous nickel cobalt oxide electrocatalyst for the oxygen evolution reaction, ACS. App. Mater. Interfaces. 2017, 9, 21225. https://doi.org/10.1021/acsami.7b02571
  81. Zywitzki, D.; Jing, H.; Tüysüz, H*.; Chan, K. C*. High surface area, amorphous titania with reactive Ti3+ through photo-assisted synthesis method for photocatalytic H2 generation, J. Mater. Chem. A, 2017, 5, 10957. https://doi.org/10.1039/C7TA01614J
  82. Chen, K.; Schünemann, S.; Tüysüz, H*. Preparation of water-proof hybrid organometal halide perovskite photonic crystal beads, Angew. Chem. Int. Ed. 2017, 129, 6648. https://doi.org/10.1002/ange.201702556
  83. Spanos, I.; Auer.; A. A.; Neugebauer, S.; Deng , X.; Tüysüz, H.; Schlögl, R*. Standardized benchmarking of water splitting catalysts in a combined electrochemical flow cell/ICP-OES setup, ACS Catalysis, 2017, 7, 3768. https://doi.org/10.1021/acscatal.7b00632
  84. Dodekatos, G.; Tüysüz, H*. Effect of post-treatment on structure and catalytic activity of CuCo-based materials for glycerol oxidation, ChemCatChem 2017, 9, 610. https://doi.org/10.1002/cctc.201601219
  85. Deng, X.; Chen, K.; Tüysüz, H*. A Protocol for the nanocasting method: Preparation of ordered mesoporous metal oxides, Chem. Mater. 2017, 29, 40. https://doi.org/10.1021/acs.chemmater.6b02645
  86. Deng, X.; Chan, C.; Tüysüz, H*. Spent tea leaf templating of cobalt-based mixed oxide nanocrystals for water oxidation, ACS Appl. Mater. Interfaces, 2016, 8, 32488. https://doi.org/10.1021/acsami.6b12005
  87. Prieto, G.; Tüysüz, H.; Knossalla, J.; Duyckaerts, N.: Wang, G; Schüth, F*. Hollow nano- and micro-structures as catalysts, Chem. Review, 2016, 116, 14056. https://doi.org/10.1021/acs.chemrev.6b00374
  88. Schünemann, S.; Chen, K.; Brittman, S.; Garnett, E.; Tüysüz, H*. Preparation of organometal halide perovskite photonic crystal films for potential optoelectronic applications, ACS App. Mater. Interfaces, 2016, 8, 25489. https://doi.org/10.1021/acsami.6b09227
  89. Dodekatos, G.; Tüysüz, H*. Au-TiO2 nanostructure for visible light driven glycerol oxidation, Catal. Sci. Tech. 2016, 6, 7307. https://doi.org/10.1039/C6CY01192F
  90. Chen, K.; Deng, X.; Goddard, R.; Tüysüz, H*. Pseudomorphic transformation of organometal halide perovskite using the gaseous hydrogen halide reaction, Chem. Mater. 2016, 28, 5530. https://doi.org/10.1021/acs.chemmater.6b02233
  91. Grewe, T.; Tüysüz, H*. Activated carbon templated crystalline tantalates for photocatalytic hydrogen production, ChemNanoMat 2016, 2, 273. https://doi.org/10.1002/cnma.201600033
  92. Wang, G.; Deng, X.; Gu, D.; Chen, K.; Tüysüz, H.; Spliethoff, B.; Bongard H. J.; Weidenthaler, C.; Schmidt, W; Schüth, F*. Co3O4 nanoparticles supported on mesoporous carbon for selective transfer hydrogenation of  α, β-unsaturated aldehydes, Angew. Chem. Int. Ed. 2016, 128, 11267. https://doi.org/10.1002/ange.201604673
  93. Bharathi, K.; Puring, K.; Sinev, I.; Piontek, S.; Khavryuchenko, O.; Dürholt, J. P.; Schmid, R.; Tüysüz, H; Muhler, M.; Schuhmann, W.; Apfel, U. P*. Pentlandite rocks as sustainable and storable efficient electrocatalysts for hydrogen generation, Nat. Commun. 2016, 7, 12269. http://www.nature.com/articles/ncomms12269.
  94. Deng, X.; Bongard, H.; Chan, C.; Tüysüz, H*. Dual templated cobalt oxide for photochemical water oxidation, ChemSusChem, 2016, 9, 409. https://doi.org/10.1002/cssc.201500872
  95. Grewe, T.; Tüysüz, H*. Alkali metals incorporated ordered mesoporous tantalum oxide with enhanced photocatalytic activity for water splitting, J. Mater. Chem. A, 2016, 4, 3007. https://doi.org/10.1039/C5TA07086D
  96. Grewe, T.; Yang, T.; Tüysüz, H*.; Chan, C*. Hyperbranched potassium lanthanum titanate perovskite photocatalysts for hydrogen generation, J. Mater. Chem. A, 2016, 4, 2837. https://doi.org/10.1039/C5TA07424J
  97. Grewe, T.; Meggouh, M.; Tüysüz, H*. Nanocatalysts for solar water splitting and a perspective on hydrogen economy, Chem. Asian J. 2016, 11, 22. https://doi.org/10.1002/asia.201500723
  98. Dodekatos, G.; Schünemann, S.; Tüysüz, H*. Surface plasmon assisted solar energy conversion, Top. Curr. Chem. 2016, 371, 215. http://link.springer.com/chapter/10.1007/128_2015_642
  99. Chan, C.; Tüysüz, H ; Braun, A.; Ranjan,C.;  La Mantia F.; Miller, B.;  Zhang, L.;  Crozier, P.; Haber, J.;  Gregoire, J.; Park,S.; Batchellor, A.; Trotochaud, L.; Boettcher, S. Advanced and In Situ Analytical Methods for Solar Fuel Materials, Top. Curr. Chem. 2016, 371, 25. http://link.springer.com/chapter/10.1007/128_2015_650
  100. Chen, K.; Tüysüz, H*. Morphology-controlled synthesis of organometal halide perovskite inverse opals, Angew. Chem. Int. Ed. 2015, 54, 13806. https://doi.org/10.1002/anie.201506367
  101. Schünemann, S.; Dodekatos, G.; Tüysüz, H*. Mesoporous silica supported Au and AuCu nanoparticles for surface plasmon driven glycerol oxidation, Chem. Mater. 2015, 27, 7743. https://doi.org/10.1021/acs.chemmater.5b03520
  102. Grewe, T.; Tüysüz, H*. Amorphous and crystalline sodium tantalate composites for photocatalytic water splitting, ACS. App. Mater. Interfaces, 2015, 7, 23153. https://doi.org/10.1021/acsami.5b06965
  103. Deng, X.; Dodekatos, G.; Pupovac, K.; Weidenthaler, C.; Schmidt, W.; Schüth, F.; Tüysüz, H*. Pseudomorphic generation of supported catalysts for glycerol oxidation, ChemCatChem 2015, 7, 3832. https://doi.org/10.1002/cctc.201500703
  104. Auer, A. A., Antonietti, M.; Antonyshyn, I.;Böhm, K-H.; Brüller, S.; Cap, S.; Cherevko, S.; Davis, R. J.; Deng, X.; Fellinger, T.; Freakley, S.; Grin, Y.; Gunnoe, B.T; Haj-Hariri, H.; Hutchings, G.; Liang, H.; Mayrhofer, K. J. J.; Müllen, K.; Neese, F.; Papakonstantinou, G.; Ranjan, C.; Sankar, M.; Schlögl, R.; Schüth, F.; Shalom, M.; Spanos, I.; Stratmann, M.; Sundmacher, K.; Tüysüz, H ; Vidakovic-Koch, T.; Yi, Y.; Zangari, G. MAXNET Energy – focusing research in chemical energy conversion on the electrocatalytic oxygen evolution, Green 2015, 5, 7. https://doi.org/10.1515/green-2015-0021
  105. Grewe, T.; Tüysüz, H*. Designing Photocatalysts for Hydrogen Evolution – Are Complex Preparation Strategies Necessary to Produce Active Catalysts?, ChemSusChem 2015, 8, 3084 https://doi.org/10.1002/cssc.201500774
  106. Tüysüz, H.; Schüth, F.; Zhi, L. J.; Müllen, K.; Comotti, M*. Ammonia decomposition over iron phthalocyanine- based materials. ChemCatChem 2015, 7, 1453. https://doi.org/10.1002/cctc.201500024
  107. Deng, X.; Schmidt, W.; Tüysüz, H*. Impacts of geometry, symmetry and morphology of nanocast Co3O4 on its catalytic activity for water oxidation, Chem. Mater. 2014, 26, 6127. http://pubs.acs.org/doi/abs/10.1021/cm5023163
  108. Deng, X.; Tüysüz, H*. Cobalt oxide based materials as water oxidation catalysts: recent progress and challenges, ACS Catalysis, 2014, 10, 3701. https://doi.org/10.1021/cs500713d
  109. Grewe, T.; Deng, X.; Tüysüz, H*. Influence of Fe Doping on structure and water oxidation activity of nanocast Co3O4, Chem. Mater. 2014, 26, 3162. https://doi.org/10.1021/cm5005888
  110. Grewe, T.; Deng, X.; Tüysüz, H*. A study on growth of Cr2O3 in ordered mesoporous silica and its replication, Chem. Eur. J. 2014, 20, 7692. https://doi.org/10.1002/chem.201402301
  111. Grewe T; Meier, K.; Tüysüz, H*. Photocatalytic hydrogen production over various sodium tantalates, Catal. Today, 2014, 225, 142. https://doi.org/10.1016/j.cattod.2013.10.092
  112. Piao, L.Y..; Chen, X.B; Li, Y.D.; Tüysüz, H. Recent progresses in the area of photocatalysis research, Catal. Today, 2014, 225, 1. http://www.sciencedirect.com/science/article/pii/S0920586113006615
  113. Parsons-Moss ; Tüysüz, H.; Wang, D.; Jones, S.; Olive, D.; Nitsche, H*. Plutonium sorption to nanocast mesoporous carbon, Radiochim. Acta, 2014, 102, 489. https://doi.org/10.1515/ract-2014-2138
  114. Tüysüz, H*.; Chan, C*. Preparation of amorphous and nanocrystalline sodium tantalum oxide photocatalysts with porous matrix structure for overall water splitting, Nano Energy, 2013, 2, 116. https://doi.org/10.1016/j.nanoen.2012.08.003
  115. Grewe, T.; Deng, X.; Weidenthaler, C.; Schüth, F.; Tüysüz, H*. Design of ordered mesoporous composite materials and their electrocatalytic activities for water oxidation, Chem. Mater. 2013, 25, 4926. https://doi.org/10.1021/cm403153u
  116. Tüysüz, H.; Salabaş, E. L.; Bill, E.; Bongard, H.;  Spliethoff, B.; Lehmann, C. W. ; Schüth, F*. Synthesis of hard magnetic Co3O4/CoFe2O4 mesoporous nanocomposite, Chem. Mater. 2012, 24, 2493. https://doi.org/10.1021/cm3005166
  117. Tüysüz, H.; Schüth, F*. Ordered mesoporous materials as catalysts, Adv. Catalysis. 2012, 55, 127. https://doi.org/10.1016/B978-0-12-385516-9.00002-8
  118. Tüysüz, H.; Hwang, Y.; Khan, S. B.; Asiri, A. M.; Yang, P*. Mesoporous Co3O4 as electrocatalysts for water oxidation, Nano Res. 2013, 6, 47. https://doi.org/10.1007/s12274-012-0280-8
  119. Tüysüz, H.; Weidenthaler, C.; Grewe, T..; Salabaş, E. L.; Benitez R. M. J; Schüth, F*. A crystal structure analysis and magnetic investigation on ordered mesoporous Cr2O3, Inorg. Chem., 2012, 51, 11745. https://doi.org/10.1021/ic301671a
  120. Tüysüz, H.; Weidenthaler, C.; Schüth, F*. A strategy for the synthesis of mesostructured metal oxides with lower oxidation states, Chem. Eur. J. 2012, 18, 5080. https://doi.org/10.1002/chem.201103650
  121. Deng, Y.; Tüysüz, H.; Henzie, J.; Yang, P*. Templated synthesis of shape controlled ordered TiO2 cage structure, Small, 2011, 7, 2037. https://doi.org/10.1002/smll.201100579
  122. Benitez R. M. J.; Petracic, O,; Tüysüz, H.; Schüth, F.; Zabel, H*. Fingerprinting the magnetic behavior of antiferromagnetic nanostructures using remanent magnetization curves, Phys. Rev. B. 2011, 83,134424. https://doi.org/10.1103/PhysRevB.83.134424
  123. Liu, Y.: Tüysüz, H.; Jia, C-J.; Schwickardi, M.; Rinaldi, R.; Lu, A-H.; Schmidt, W.; Schüth, F*. From glycerol to allyl alcohol: iron oxide catalyzed dehydration and consecutive hydrogen transfer, Chem. Commun. 2010, 1238. https://doi.org/10.1039/B921648K
  124. Benitez, J.; Petracic, O.; Tüysüz, H.; Schüth, F.; Zabel, H*. Decoupling of magnetic core and shell contributions in antiferromagnetic Co3O4 nanostructures, Benitez EPL 2009, 88, 27004. https://iopscience.iop.org/article/10.1209/0295-5075/88/27004
  125. Tüysüz, H.; Galilea, J. L.; Schüth, F*. Highly diluted copper in a. silica matrix as active catalysts for propylene oxidation to acrolein, Catal. Letters, 2009, 131, 49. https://doi.org/10.1007/s10562-009-9909-y
  126. Lu, A.H.; H.; Tüysüz, H.; Schüth, F*. Synthesis of ordered mesoporous carbon containing highly dispersed copper–sulphur compounds in the carbon framework via a nanocasting route, Microporous and Mesoporous Mater. 2008, 111, 117. https://doi.org/10.1016/j.micromeso.2007.07.017
  127. Benitez R. M. J.; Petracic, ; Salabas, E. L.; Radu, F.; Tüysüz, H.; Schüth, F.; Zabel, H*. Evidence for core-shell magnetic behavior in antiferromagnetic Co3O4 nanowires, Phys. Rev. Lett. 2008, 101, 097206. https://doi.org/10.1103/PhysRevLett.101.097206
  128. Tüysüz, H.; Comotti, M.; Schüth, F*. Ordered mesoporous Co3O4 as highly active catalyst for low temperature CO-oxidation, Chem. Commun. 2008, 4022. https://doi.org/10.1039/B808815B
  129. Tüysüz, H.; Liu, Y.; Weidenthaler, C.; Schüth, F., Pseudomorphic transformation of highly ordered mesoporous Co3O4 to CoO via reduction with glycerol, J. Am. Chem. Soc. 2008, 130, 14108. https://doi.org/10.1021/ja806202v
  130. Tüysüz, H.; Lehmann, C. W.; Bongard, H.; Tesche, B.; Schmidt, R.; Schüth, F*. Direct imaging of surface topology and pore system of ordered mesoporous silica (MCM-41, SBA-15 and KIT-6) and nanocast metal oxides by High Resolution Scanning Electron Microscopy, J. Am. Chem. Soc. 2008, 130, 11510. https://doi.org/10.1021/ja803362s.
  131. Tüysüz, H.; Salabas, E. L.; Weidenthaler, C.; Schüth, F*. Synthesis and magnetic investigation of ordered mesoporous 2-line ferrihydrite, J. Am. Chem. Soc. 2008, 130, 280. https://doi.org/10.1021/ja075528j
1. Post-doc Researcher Position in Photocatalysis:

The project is about the development of halide perovskite-based materials and their investigation as photocatalysts for solar energy conversion to chemical energy. The focus of the project will be the design and in-depth characterization of new halide perovskite compositions and the investigation of their photocatalytic functionalities for redox model reactions and polymer recycling.

To apply, see: https://jobs.materials.imdea.org/offer/view?id=41570

2. Ph.D. Position in Photocatalysis:

The project is about the development of halide perovskite-based materials and their investigation as photocatalysts for solar energy conversion to chemical energy. The focus of the project will be the design and in-depth characterization of new halide perovskite compositions and exploring their photocatalytic potentials for redox model reactions and polymer recycling.

To apply, see: https://jobs.materials.imdea.org/offer/view?id=41565